LS-40 November 21, 1985

Magnetic Field Measurements and Analysis For an Aladdin Dipole Magnet

bу

Kenneth M. Thompson
Electromagnetic Technology Program
Argonne National Laboratory
Argonne, IL 60439

			Table of Contents	Page
Sum	ma ry			i
Α.	Int	rodu	ction	1
	2.	Meas	et Description uring System Descriptions	1 1 3
В.	Equip	ment		5
	1.	Pr	obe Positioning System	5
		a. b.	Description Calibration	5 7
	2.	Fiel	d Probe	7
		a. b.	Calibration Probe Center	8 9
			 Method Repeatability 	9 9
		c.	Hall Gaussmeter Parameters	10
	3. 4. 5. 6. 7.	Opti Powe	liary Probes cal Alignment Equipment r Supply let Cooling Water System port	10 13 13 14 14
		a. b.	Magnet Manipulator	14 14
C.	Coord	linat	e Systems	17
	1. 2.	_	net (Absolute) suring System	17 19
D.	Align	nment	of Magnet and Manipulator	21
	1.	Magn	net	21
		a. b. c.	Installation Level Horizontal Orientation	21 21 23
	2.	Mani	ipulator	23
			Level Primary Reference Point Rotation Angle Probe Location	23 24 24 25
Ε.	Gap	measu	rements	27
	1.	Pole	e Faces	27
		a. b.	Level Gap Height and Geometrical Midplane	27 28
	2.	-	Height vs Current	28
F.	Vert	ical	Field Measurements	31

	1. 2.		-On, Turn-Off, and Warm-Up Procedures Taking Details	31 31
		a.	Geometries	31
			 Universe Scan Lines 	31 32
		b. с.	Multiple Readings Readings Taken During a Scan	34 34
			 Parameters Measured Repeatability of Vertical Field Measurements 	34 35
		d. e. f.	Reference Checks Storage Media and Data Files Estimated Measurement Error	35 36 37
G.	Data	Anal	ysis Programs	.41
	1.	Data	Presentation	41
		a.	Tabular Listings	41
			 Field, and X, Y, Z Coordinates Logged Readings of Auxiliary Probes 	41 42
		b.	3D Plots of Field Values	42
	2. 3. 4. 5.	Fiel Leas Harm	nalize, Match, and Merge Ld Integration St Squares Fitting Thonic Field Coefficients Tical Midplane	42 43 44 45 46
н.	Resu	lts		47
	1. 2. 3. 4.	Fiel Effe	ld vs Current ld Integrals ective Lengths nonic Field Coefficients	47 49 52 54
		a. b. c. d.	Estimated Measurement Error Radial Scan Length Used Degree of Polynomial Used Harmonic Coefficient Values	54 54 55 56
			 Representative Coefficient Errors Representative Relative Strengths of Harmonics Central Gap vs the Gap Ends Left Side vs Both Sides Coefficient Lists Coefficients vs Y (vertical) Coefficients vs Z (axial) 	56 57 58 59 60 61 63
	5.	Vert	tical Midplane	66
I.	Magn	etost	tatic Field Calculation	69
J.	Disc	ussio	ons	73
Ack	nowle	dgmer	nts and References	80
App	endic	es Ir	ndex	81

Summary

In January 1985, the task of measuring the vertical magnetic fields in one of the dipole magnets built for the Aladdin ring at the University of Wisconsin began at Argonne National Laboratory. The primary goal of this effort was to determine the harmonic field coefficients for the magnet; a secondary goal was to determine the location of the magnetic midplane.

There already existed at Argonne most of the major parts of the measuring system that was used for this work; some modifications and additions had to be made, however, in the hardware and software components to accommodate the specific requirements of this magnet. Only the vertical component of the magnetic field at each point in the scan geometry was measured using a Hall probe. The field values were measured on seven horizontal planes each containing up to 2037 points extending across the gap between \pm 7.62 cm with respect to the gap center and to about 41.73 cm from each end of the magnet core. The points were located on lines parallel to the X-axis, called "radial" lines, and on axial lines that were at fixed distances from the center path through the scan geometry. The elevations of the planes extended over ±1.727 cm with respect to the geometrical midplane. The factors contributing to the measurement errors for the field values were determined mostly through explicit measurements. The estimated measurement errors were 4.7 Gauss (0.04%) for runs with central field values between 1.2 and 1.6 T and 2.4 Gauss (0.16%) for central fields around 0.15 T.

The dependency of the central field on the magnet current was determined. Since the magnet has a C-core, the gap height decreases with increasing current. This variation was measured from OA to 1.2 kA; the total change in the gap height at the magnet center (0,0) at an excitation of 1000 MeV (1018 A) was found to be 153 μ m \pm 28 μ m.

The vertical field values were measured at three excitations corresponding to circulating electron beam energies of 1000 MeV, 800 MeV, and 100 MeV. The most complete measurements were done at 1000 MeV. The next most complete data was taken for 100 MeV, the injection energy and only a few respresentative runs were done for 800 MeV, the current operating energy of the ring. These vertical field values were integrated along axial paths through the geometry. The integrals for paths located at distances between ± 5.08 cm from the center of the gap were found and the results were used to calculate the harmonic coefficients.

A representative set of coefficient values and the associated standard errors are shown in Table i.

Table i Harmonic Coefficients for 1000 MeV and Y = 0

Туре	i			b _i	
Dipole Quadrupole	0			5 x 10 ⁻⁶ 0.0005	
Sextupole	2	-7.53	±		$T-m/m_2^2$
Octupole	3	100.	#	8.	$T-m/m^3$
Decapole	4	-10700.	±	550.	$T-m/m^4$

The primary harmonic coefficients of interest are the quadrupole and sextupole. Variations in these values were obtained on the different planes that were covered. At 1000 MeV, these coefficients had the largest magnitudes on the geometrial midplane and decreased by about 4 to 6% at $Y = \pm 0.64$ cm and by 15 to 35% at $Y = \pm 1.73$ cm. The dipole coefficients had corresponding increases of < 0.01% and 0.04 to 0.1% over these ranges.

The field integrals were also used to determine the effective lengths of the magnet. At 1000 MeV for the integral path on the geometrical midplane, Y = 0, and along the center of the gap, X = 0, the effective length was found to be 1.127 m; at 100 MeV the corresponding value was 1.141 m. The locations of the effective edges at both ends of the magnet were also found for the 1000 MeV, Y = 0 data. This showed that the magnet has an effective wedge angle of $3.5^{\circ} \pm 0.1^{\circ}$ at 1000 MeV.

In addition to the harmonic coefficients found for the field integrals, the coefficients were also found for the midplane scans at 1000 MeV and 100 MeV for the field values on each "radial" line through the scan geometry. Plots of the quadrupole and sextupole coefficients were shown in Fig. i for 1000 MeV at Y = 0.

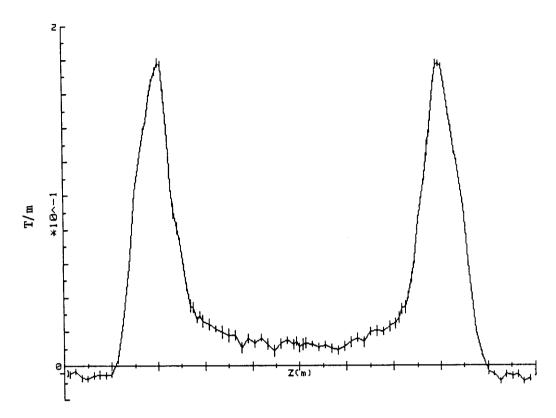


Fig. i.a. Quadrupole harmonic Coefficient vs Z for 1000 MeV at Y = 0.

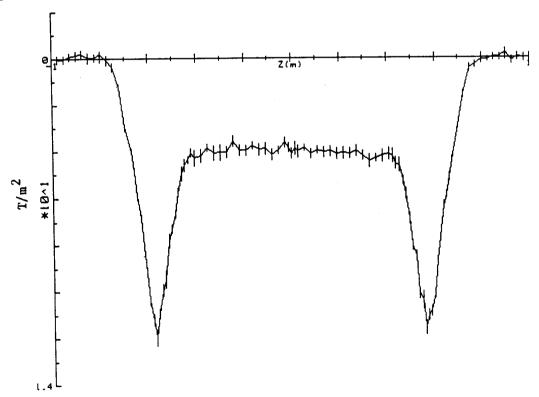


Fig. i.b. Sextupole harmonic coefficient vs Z for 1000 MeV at Y = 0.

The measured vertical field values were also used to define the location of the magnetic midplane at each of 2037 points in the scan geometry for 1000 MeV and 100 MeV. The location of the magnetic midplane is relative to the geometrical midplane Y = 0. The average elevation inside the magnet gap at 1000 MeV was determined to be at Y = +1.8 mm and the average slope of the magnetic midplane in the transverse, X, direction was -2.3×10^{-3} mm/mm. This slope corresponds to a total variation of 0.23 mm across the 10 cm wide useable gap. The elevation at 100 MeV, however, is much less than the positioning errors in the Z direction and is, therefore, not significantly different from 0.0.

The above is only a brief description of the major areas addressed by these measurements and the associated analysis. Some of the results presented here are only representative of the values determined. The following sections of this report, however, contain the details of the measurements, and a complete listing of the resulting parameters.

A. Introduction

The following report describes the measurements and corresponding analyses of the vertical magnetic fields of an Aladdin dipole magnet. The primary goal was to measure the vertical magnetic fields and to extract the harmonic field coefficients. A secondary goal was to get information concerning the location of the magnetic midplane. In order for the reader to have confidence in the accuracy of the results, many of the procedures used to calibrate the system and check the repeatability of the measurements are also included.

A.l. Magnet Description

The dipole magnet measured is BMO3 according to the Aladdin designation. It has a C-core made from parallel-stacked mm thick laminations each 2.3 mm thick and composed of C. R. steel. The core was assembled from five separate substacks each 21.56 cm long. The front (outside radius) edge of each of these blocks has an angle of 0° , 6° , or 12° with respect to a square edge depending on its location in the assembled magnet. The nominal radius of curvature of the magnet gap is 208.3 cm. The gap height was measured to be 5.702 cm \pm .004 (2.245 inches \pm 0.0017). The pole tip is 17.8 cm (7 in) wide and contains edge shims .15 x 1.27 cm (.060 x .5 inches) in size. These shims leave an accessible gap height of only 5.4 cm.

The coil on each pole is assembled from four, double-layer pancakes and is attached to the core through two stainless steel bars, one located only at each end of the core. The sketches in Figs. A.1 and A.2 show a cross sectional view and a plan sectional view of the magnet with the dimensions of interest. The electrical and water connections are made to each coil on the outside radius edge resulting in a more symmetric shape for the magnetic field at each end of the gap. Note the asymmetry in the upper and lower coil thicknesses.

A.2. Measuring System

The measuring system used was originally designed and built to measure the magnetic fields in prototype sector magnets for a proposed electron microtron at Argonne. It contains a probe positioning manipulator with the two horizontal axes driven with DC servo motors and a manually adjusted vertical axis.

The methods used to calibrate the manipulator and to find measuring center of the Hall probe will be briefly described below and the resulting

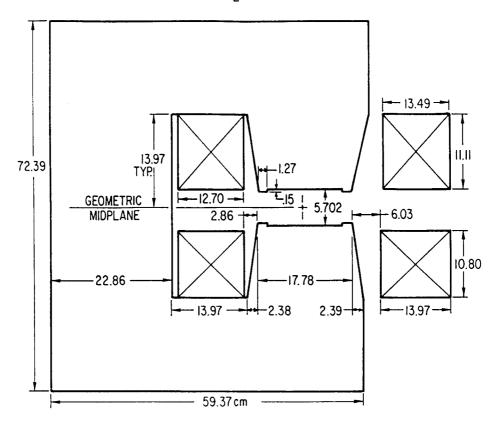


Figure A.l Cross section of Aladdin dipole as built.

Dimensions in cm.

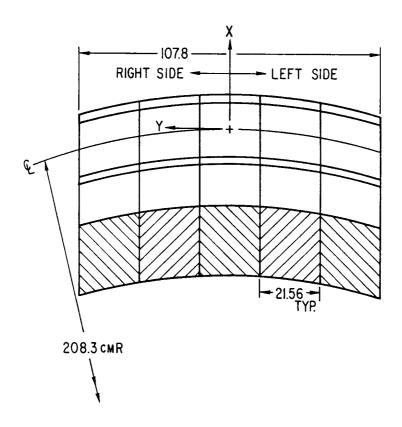


Figure A.2 Plan sectional view of Aladdin dipole.
Dimensions in cm.

positioning uncertainties will be listed. The measuring system contained a Hall probe to measure the vertical components of the magnetic fields. Other probes, called auxiliary probes, were also used to measure a reference field (NMR) and various voltages and temperatures associated with the magnet environment during the measurements. The calibration of the Hall probe will be described below. The results of repeatability checks will also be presented. The measuring system was controlled with a Hewlett Packard 9845 desk top computer programmed in BASIC. The analysis programs were also contained in the data taking software which facilitated the on line analysis of the data during the data taking processes.

A.3. Data Descriptions

The results described in this report are for central field and gap height measurements versus excitation current as well as the vertical field measurements at excitations corresponding to 1000 MeV, 800 MeV, and 100 MeV and at elevations of 0, $\pm .635$, ± 1.27 , and ± 1.7272 cm with respect to the geometrical midplane. All combinations of energy and vertical position were not covered, however, but measurements were concentrated at 1000 MeV and 100 MeV. A representative set of tabulated data is contained in the Appendices to show the form of the data that is available.

The raw data was stored on magnetic tapes compatible with the Hewlett Packard computer and the HEP/VAX at Argonne. The data after being normalized and merged, where appropriate, are called unified data and were also placed in files accessible to the HEP/VAX. These contained the data used to calculate the integral field values and the subsequent field coefficients. The analysis of the data described here was done using the HP 9845 computer with the programs described below. The results presented are primarily related to the field integrals. Effective lengths were extracted as a function of excitation and vertical position. Considering the horizontal distribution of the integrals gave the integrated strengths of the harmonic fields as a function of excitation and vertical position. The location of the magnetic midplane within the magnet gap was also determined.

The probe positioning manipulator covered only an area about 1 m long and as a result each side of the magnet was measured separately. Data was concentrated on the left side as viewed from the open side of the yoke. A full set of data was taken at the left side for only the 1000 MeV and 100 MeV excitations and only near the midplane for the 800 MeV excitation.

The right side data was taken for all planes at only the 1000 MeV excitation, and at 800 and 100 MeV data was taken only on the geometric midplane.

Finally, the results of a magnetic field calculation using the program $PE2D^5$ will be presented. The primary area of concern here was the effect of vertical asymmetries in the coil locations on the position of the magnetic midplane.

As a final note, some suggestions are made as to what might be done to improve these existing magnets and how the measurements could be expedited if ever there was a future need.

B. Equipment

The equipment setup that was used for these measurements is shown in Fig. B.1. The primary elements in this system are described below along with some of the procedures used to calibrate or otherwise test their operation.

B.1. Probe Positioning System

B.l.a. Description

The probe positioning system, manipulator, is part of a magnet measuring system designed and built to measure prototype sector magnets for an electron microtron. The manipulator consists of three orthogonal drives called X, Y, and Z, which are used to position the probe at points within the accessible volume. The two horizontal axes are called X and Y and the vertical axis is called Z. These names are not consistent with the usual nomenclature used for bending magnets; i.e., Z along the beam direction, Y vertical, and X horizontal and perpendicular to Y and Z. The choice is, however, a common, right-handed system with Z being vertical. This more generic choice was used because the manipulator was designed to measure a variety of magnets and the final relative orientation of the manipulator could not be assumed beforehand. The following discussions of manipulator axes refer to this internal set of coordinates but all references to the magnet coordinate system in section H. use the more common choice (Y vertical).

The X and Y axes are motor driven and are controlled by the data taking computer. The Z axis can only be changed manually. The Y axis is 1.0 m long, the X axis 0.5 m, and the Z axis 0.1 m. The alignment of the axes is reasonably accurate but slight variations in the ways can cause much larger errors at the probe position usually located at the end of a probe boom which is often longer than 1 m. Because of the multiplying effect of this boom, the control program makes corrections for every destination point. The amounts of the corrections are determined with an algorithm which was derived by a calibration procedure. The standard errors for the probe location after the corrective algorithm was applied are shown in Table B.1 for a probe located on a boom approximately the length used during the measurements of the magnet.

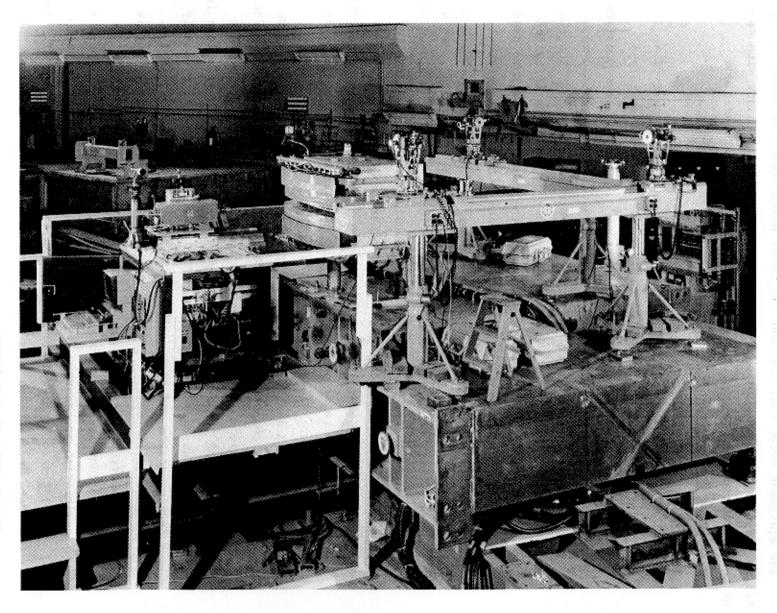


Figure B.1 Equipment setup used to take magnetic field measurements.

Table B.1

Standard Positioning Errors for a 0.924 m

Probe Boom Length

	Standard Error		
Axis			
	(µm))	
X	38	(76)*	
Y	64	(178)	
Z	190	(305)	

*Maximum error over entire accessible area.

B.l.b. Calibration

To calibrate the manipulator, an optical square was assembled from tooling bars. The components and setup of this device were very similar to those used in the magnet measuring system described in sections B.4 and C.1. The manipulator was set so that the long, horizontal axis, Y, was parallel to one side of the square. The four corners of the manipulator were then leveled and targets were mounted on the probe boom at a radius of 0.924 m from the support center; the location was about equal to the location of the Hall probe used for the actual field measurements described in this report. The probe was then positioned at points at 10 cm spacings for both the X and Y axes over the entire accessible area. At each point, the X, Y, and Z locations were found for the associated targets. The differences of the measured values and the values as defined by the tooling bar scales and optical level were the errors. The RMS values of these errors were then used as the standard errors for the manipulator.

B.2. Field Probe

The movable magnetic field probe was a Hall probe supplied by F. W. Bell, Inc. The probe was a Model STL80402 used with a Model 811AR meter unit with a 4 1/2 digit DVM. The probe was calibrated by Bell to determine its temperature coefficients and verify its operational characteristics.

B.2.a. Calibration

The Hall probe was also calibrated at Argonne as a complete system. The probe was placed at the point (0,0,0) at the center of the magnet gap and the NMR probe was placed directly under it at (0,0,-1.7 cm). Moving the NMR by $\pm 0.6 \text{ cm}$ in X and Y did not change the NMR reading by more than I gauss with a central field of about 1.55 T.

The meter was zeroed as per the Bell instructions except that a custom built zero-gauss chamber was used (spiral wound Mu-metal with mylar between layers, 2 cm inside x 6 cm outside x 10 cm long) in order to fit around the probe when it was mounted at the end of the manipulator boom. The magnetic field was raised to 1.25 T and the Hall probe was rotated about the boom axis in order to maximize the reading; a 5 1/2 digit meter was connected to the analog output signal on the Bell meter to get higher resolution. The calibration constant was adjusted to obtain the same reading on the Hall meter as appeared on the NMR.

The above adjustment was done after the meter had been on for over four hours. Besides this obvious precaution, however, the measuring system was totally energized and put into a state that was equal to that during the measurement process; i.e., all electrical components of the system had to be turned on and warmed up. Of particular interest it was found that the computer not only had to be turned on but it had to read the Hall meter at least one time. Not doing so could inject an error of up to 2 gauss.

The Hall probe and NMR meter readings were taken by the computer using the probe reading program. Ten readings were taken at each field setting and RMS differences were calculated. Readings were taken for field values between about 0.35 and 15.5 T. The standard error assigned to this calibration process was derived by finding the RMS value of the RMS differences at the measured values.

B.2.b. Probe Center

B.2.b.1. Method

To locate the effective center of the Hall probe, a localized bump was created in the magnetic field near the center of the magnet gap operating at central field strengths from 1.0 to 1.2 T. The bump was created by a pair of 0.635 cm diameter pins with points having 30° included angles and 0.5 mm flat ends at the tip. The flat ends were incorporated to prevent tip damage during use. These pins were made from SAE 1010 steel and were mounted in an aluminum frame which located the pins concentrically about a common vertical axis with the points facing and separated by 8.5 mm.

The technique used to locate the probe center for a given axis, X, Y, or Z, involved moving the probe across the bump only along the desired direction and measuring the field values at a number of points. A central field strength was also measured with an NMR probe at the same time as the Hall probe measurements were taken at each These values were used to normalize the Hall readings so that the deleterious effects of the fluctuations in the central field could be eliminated for scans that have total variations of as little as a few gauss. squares procedure was then used to fit a polynomial of degree 2 to the normalized field values, and the coordinate value at which the calculated curve had an extreme was determined. The probe was then moved to this location and the offset value between the calculated point and the original starting point was returned.

B.2.b.2. Repeatability

To determine the repeatability of the bump searching procedure, repeat searches were initiated after an initial run had placed the probe at the calculated location of the extreme value. Of course, a perfect machine would give a zero offset for repeated run, but in reality non-zero offsets resulted. This check was actually done for only the X and Y axes. The repeatability of the Z

axis was assumed to be the average of the X and Y values. The RMS fluctuations are listed in Table B.2.

Table B.2

RMS Fluctuations in Probe Center Definition

σ
(µm)
8
18
13

B.2.c. Hall Gaussmeter Parameters

Some of the parameters for the Hall Gaussmeter system are listed in Table B.3.

Table B.3

Hall Gaussmeter Parameters

Probe serial number	150667
Sensing element diameter	1.0 mm
Meter digits	4 1/2
Meter resolution at 2.0 T FS	l gauss
Temperature coefficient	-0.003%/°C
$(20 - 40^{\circ} C)$ at 1.52 T	
Calibration standard error	2.9 gauss
(0.35 - 1.55 T)	

B.3. Auxiliary Probes

Besides the Hall probe used to measure the vertical component of the magnetic field at the points in the scan geometry, there were other probes used to monitor a variety of parameters in the measuring environment during the scan process.

B.3.a. NMR Magnetometer

This probe was a Sentec Type 1000 magnetometer used with a #5 probe during the field scan operations at 1000 and 800 MeV. This unit can automatically track a slowly changing field. The parameters for this unit were assumed to be those quoted in the published specifications and some are listed in Table 8.4.

Table B.4

NMR Magnetometer Parameters

Meter digits	7
Meter resolution	0.01 gauss
Absolute accuracy at 1.5 T	0.1 gauss

B.3.b. Temperature

In order to determine various temperatures in the measuring environments, an Ultra-7 thin film, platinum resistance device made by Hy-Cal Engineering was used. A number of different types of sensing elements are available but only one was used for the present set of data. Some of the parameters for the sensor and associated amplifier are listed in Table B.5.

Table B.5

Temperature Probe Parameters

Probe Type	RTS-5760-B-U-240
Probe Resistance	1000 Ω
Probe Size (mm)	4.8 wide x 7.9 long x 1.27 thick
Amplifier Type	BA-507-B
Output	0 - 10 volts
Range	10 - 40° C
Accuracy	±0.025° C

B.3.c. Analog to Digital Converter

In order to measure various voltages in the measuring environment, two 12-bit ADC's were available in the measuring system. The units were type AD363K made by Analog Devices. Each also included a 16-channel multiplexer on the input which could be used as eight differential channels. The specifications for these units were assumed to be the published values and some are listed in Table B.6.

Table B.6

12-Bit ADC Parameters

Resolution	12 Bits
Relative accuracy	0.025% FSR
Temperature coefficient	0.004%/°C Max.
Throughput rate, full rated accuracy	25 kHz

B.4. Optical Alignment Equipment

The primary elements of the optical alignment system were transits, optical levels, and tooling bars.

B.4.a. Transits

These transits were Brunson, Type 75 units containing optical micrometers capable of resolving one reading to about 12 μm . There were fluctuations, however, that were demonstrated when readings were repeated. There were also conditions that made the targets hard to see. The total error in establishing the location of a target was, therefore, assumed to be $\pm 50~\mu m$ (± 0.002 inches) which would result in a standard error of about 18 μm .

Three of these transits were used to establish an optical square. Two of them had autocollimating mirrors on the horizontal axis and the third had a telescope mounted concentrically with the horizontal axis of rotation.

B.4.b. Optical Level

A type N3 optical level, made by Wild, was used to level the magnet and probe manipulator. Using optical scales, it was possible to make repeated readings with total variations of less than or equal to $\pm 25~\mu m$.

B.4.c. Tooling Bars

The three transits were mounted on two 3.0 m long tooling bars as shown in Fig. B.l. These bars were made by Brunson and contained provisions for mounting precision scales under the transits with a good source of illumination. This permitted the scopes to be located to within a total error of about $\pm 25~\mu m$.

B.5. Power Supply

The power supply used to excite the magnet was originally designed to operate a 30 ton prototype magnet for another project. The current and voltage ratings were suitable for the Aladdin dipole but the filter and regulator were not properly matched to the Aladdin magnet. This caused some electrical noise to be imposed on the magnet coils when the supply was operated in the current regulated mode. This caused the NMR probe to be unable to maintain a stable tune. As a result, the power supply was operated in a voltage regulated mode. This caused only minor inconveniences during the measurements since the NMR or current transductor readings were used to normalize the data. There were interlocks installed to

protect the magnet from water shortages, and excess temperatures and to protect the operators from ground faults.

A precision current transductor was incorporated in this supply. This was a type 1000 SH made by Hazemeyer (Holland) and specified to be accurate to better than $\pm 0.01\%$.

B.6. Magnet Cooling Water System

Low conductivity water was used to cool the magnet coils. The water was supplied by a 5 hp pump which could maintain a pressure gradient of 50 psi across the magnet giving a flow in excess of 15 gpm. The temperature of the water supply in this system was maintained at 26.7° C (80° F) $\pm 2^{\circ}$ C.

B.7. Support

B.7.a. Magnet Support

The magnet was mounted on top of about 30 Tons of solid steel. The magnet rested on three points and was supported with the same hardware components that are used for the dipoles located in the Aladdin ring. Directly under the center, (0,0), point in the magnet is a conical pocket. A steel ball bearing, 3.810 cm in diameter sits in this pocket and in a similar pocket on the top of a rigid post. There are two pads at the back corners of the magnet that can slide on the smooth, bottom plate of the magnet. Each of these pads rests on a ball bearing which rests on top of the stem of a 25 T worm screw jack. There were also pusher screws at the pad at the corner which were used to rotate the magnet about the front support point.

B.7.b. Manipulator Support

The measuring system, probe manipulator rested on four steel casters. The two casters located on the side next to the magnet contained V-grooves. These casters rested on the tops of two I-beams, one of which had a V-track. The manipulator could be easily rolled from one end of the magnet to the other. When in a spot where measurements were to be made, four 15 cm high screw jacks were placed between the I-beams and the bottom of the manipulator and were used to raise the manipulator off the wheels and to subsequently level it. To increase the rigidity of this support, small jacks were placed between the bottoms of the I-beams and the floor. This support allowed operators to move around the system during the time when measurements were being taken without causing any vibrations in the

probe that were larger than 0.1 mm. To minimize even these vibrations, however, during the measurements, movements were restricted only to those places which caused NO vibrations. This did allow access to the control computer.

C. Coordinate Systems

There were actually two coordinate systems in the measuring environment. The most important is called the absolute system, which is defined by the optical alignment system. This is the system to which all coordinates are referred. The second system is the one used internally in the control program which coordinates the movements of the probe through the scan goemetry.

C.1. Magnet (absolute)

All coordinate values listed in this report are referenced to the absolute coordinate system. This system is defined by an optical alignment system. The nomenclature and target locations for this system are shown in Fig. C.l. The first step in the set-up of this system was to

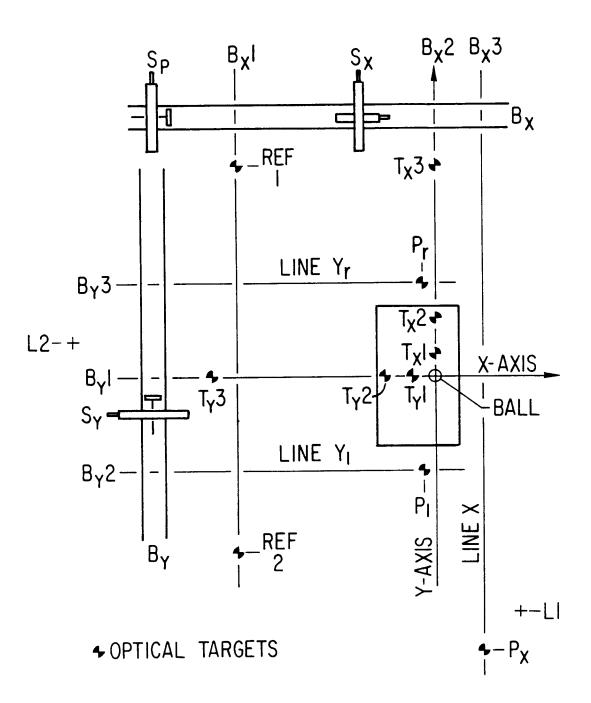


Figure C.l. Absolute coordinate system nomenclature and target locations.

place targets, REF1 and REF2, on the top of the steel foundation blocks on which the magnet and optical square would rest. These targets were placed at spots that would be observable after all other parts had been installed. They were placed so that they were well separated in the Y direction and were approximately parallel to the track on which the manipulator rode when it was moved from one end of the magnet to the other. A 3 m tooling bar, Bx, was then leveled, with a precision, bubble level (Starret #199) and set perpendicular to the line REF1-2. With the scope Sx aligned on REF1-2 and leveled, the tooling bar scale reading directly under the scope was determined for future reference. The horizontal axis scope in Sx was then used to set the pivot scope, Sp, of the optical square to be parallel to scope Sx. The second tooling bar was then set so that it was centered along the line of sight of scope Sp and to be level. Now scope Sy was adjusted to be perpendiucular to scope Sp. The two scopes, Sx and Sy, were often moved during the measuring procedures. Whenever they were, they were always readjusted with respect to the fixed, pivot scope, Sp.

At this point, the magnet support was securely bolted to the foundation blocks. A 3.810 cm diameter, steel ball bearing, was placed in the pocket on top of the fixed column. This ball was located, by definition, at the origin of the absolute coordinate system. Its center was located in the X and Y directions by sighting the two corresponding edges with the Sx and Sy scopes. The differences of the edge readings were within 76 μm of the 3.810 cm. The midpoint between the edge readings was then the origin (±38 μm). Each scope was moved to the corresponding origin location and aligned to Sp.

The X and Y axis lines were transferred to the base plate by placing targets at Txl, Tx2, Tyl, and Ty2. A third target, Tx3 or Ty3, was placed on each line but on the foundation block surface.

C.2. Measuring System

The measuring system coordinate system is defined by the mechanical components of the manipulator - the slides, drive screws and motors, and the computer program used to control the moves. The effective result is a coordinate system with straight and perpendicular axes.

D. Alignment of Magnet and Manipulator

D.l. Magnet

D.l.a. Installation

Before the magnet was placed on the support, the scopes, Sx and Sy, were set at the corresponding origins and aligned with Sp. The scopes were then sighted on the corresponding axis targets near the edges of the support base plate, Tx2 and Ty2. The magnet was then carefully placed on the support with the 3.180 cm ball at the origin seated in the conical pocket on the bottom surface of the magnet.

The alignment of the scopes with the targets Tx2 and Ty2 was checked and verified that the magnet support had not been accidentally moved during magnet installation. Further verification was made by sighting the target at Ty1, which was just within sight of scope Sy, and seeing that it too had not been moved.

D.1.b. Level

The magnet was leveled using a prevision bubble level (Starrett #199). This unit was 38 cm long and had graduations of 8.6 arc secs (42 µm/m). Since the top surface of the magnet was machined in the same setup as the pole surfaces, the top surface should be a good reference surface for leveling. The top surface was cleaned of any loose particles. The level was placed between the ball cups 1 and 3 (see Fig. D.1), which were used to locate an alignment fixture for the Aladdin ring. The screw jack under cup 3 as adjusted to make the magnet level. The level was reversed and moved over the surface a little to make sure of a correct reading. The same process was repeated for the level placed between cups 1 and 4. The process was repeated and resulted in final readings of the level well within one division (42 µm/m) for both locations.

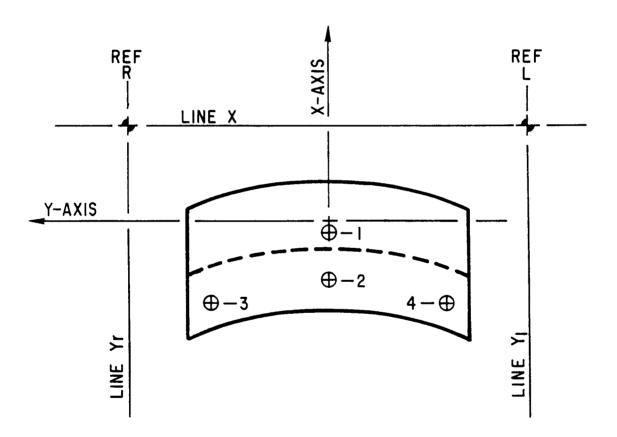


Figure D.1. Top view of magnet core showing ball cups for Aladdin alignment fixture and important reference lines defined in the absolute coordinate system.

D.l.c. Horizontal Orientation

The origin of the absolute coordinate system is locked to the magnet gap center point by the ball and socket coupling to the support. After the magnet was leveled, optical scales were used to measure the distances from an arbitrary line parallel with the Y axis to the back yoke edges of the last lamination at each end of the magnet. These measurements were estimated to be accurate to only about ±0.1 mm since the yoke surfaces were not flat and they were painted. The rotation angle of the magnet was adjusted to make the two distances the same. For future reference, the locations of the four ball cups on the top of the magnet were located. The X and Y coordinates are relative to the absolute coordinate system. coordinates are with respect to the geometrical midplane of the gap. A 19.05 mm diameter ball was used to locate all three coordinates for each cup. This ball was precisely ground to a hemisphere ($\pm 12.5 \mu m$) and lines were scribed to cross exactly at its center. A Wild N3 optical level was used at location L1 to obtain the Z coordinates. The total errors are estimated to be ± 0.1 mm for the X and Y coordinates and ±50 µm for the Z coordinate. center coordinates are listed in Table D.l. The cup numbers are defined in Fig. D.l.

Table D.1

Coordinates for the Ball Cups on Magnet Top

Ba11	X	Y	Z	
No.	(cm)	(cm)	(cm)	
1	-0.363	-0.008	38.301	
2	-25.672	0.0076	38.301	
3	-43.711	-43.068	38.257	
4	-43.442	43.355	38.158	

D.2. Manipulator

D.2.a. Level

There are steel pads at each corner of the manipulator table. These were ground during the original system calibration so that they are coplanar to the plane of access as defined by the center of the top, moveable, manipulator platform. Whenever the manipulator was moved, these pads were first leveled. This was done by placing a Wild N3 optical level at location L1, Fig. C.1, and

sighting a single optical scale, moved from pad to pad. The screw jacks under the manipulator table were used to make the required adjustments. The final, total variations at the four corners were always \leq 50 μm .

D.2.b. Primary Reference Points

A primary reference point is one at which the absolute coordinates exactly equal the non-rotated coordinates of the measuring system. There were two such points, REF R and REF L, defined for this magnet and are shown in Fig. D.l. These are located at the intersections of the three lines - Y1, Yr, and X. The line X lies along the X = 31.674 cm line and is just beyond the front of the magnet; it corresponds to the scale reading Bx3 on the Bx tooling bar. There was also a check target placed on the surface of a 15 Ton steel block located at Y \approx -490 cm. The line Yl lies along the Y = -82.875 cm line and is just beyond the left end of the magnet; it corresponds to the scale reading By2 on the By tooling bar. There is also a check target, Pl, for this line located at X = -12.7 cm. Similarly the line Yr lies at Y = +82.875 cm, corresponds to target By 3 and has a check target, Pr, at X = -12.7 cm. The check targets were defined at a time when the optical square had just been set up. They were often used during the measurements to quickly validate the scope positions.

D.2.c. Rotation Angle

The rotation angle of the measuring system coordinate system around a primary reference point and with respect to the absolute coordinate system had to be defined each time the manipulator table was moved. This process was done under computer control. It was defined by first setting the probe under manual control on the primary reference point of interest. The probe was moved under computer control to a point, a secondary reference point, along the line X and near the end of the accessible travel. This move was made with all corrections incorporated in the drive logic. The optical micrometer on the Sx scope was then used to measure the actual offset of the probe target in the X direction from the line X. The probe was then moved back to the primary reference point. The measured offset was then converted to an error angle which was used to correct the rotation angle used during the move from the primary reference

point. The resulting rotation angle was then used for all computer directed moves done until the manipulator was moved to a different location.

D.2.d. Probe Location

The probe could not be fully extracted from under the shadow of the coils and set on the line X. Reference targets were, therefore, placed on the top and two sides of the probe boom about 8.2 cm back from the probe center. These targets were used to set the probe on the primary and secondary reference points. The corresponding location of the probe measuring center, however, still had to be defined in the absolute coordinate system. The location (Xr, Yr) could be estimated from external measurements at the beginning.

To get a more exact location, however, a magnetic bump was created near the center of the magnet; this procedure is described in section B.2.b.1. The steel pin support structure was mounted on a 3.2 mm thick aluminum plate. This plate was large enough to permit targets to be placed on it and viewed by the scopes Sx and Sy which were set to locate the primary reference point. The optical square was used to locate the geometrical center axis of the pins relative to the two targets. The plate was placed in the magnet gap with one of the targets centered on the primary reference point and the other one on the line X. The installation and subsequent extraction of the pins from the magnet was always done with the magnet turned off. Doing so with the magnet turned on caused unreproducible shifts in the magnetic center of the pin structure. Now the location of the pins was defined (Xp. Yp) in the absolute coordinate system. The probe was then moved by the computer from the estimated location, (Xr, Yr), corresponding to the primary reference point to the bump location at (Xp, Yp). A bump search was done to determine the offsets required in X and Y to move the probe to the axis of the pins. These offset values were used to adjust the values of (Xr, Yr) giving the effective location of the probe center corresponding to the primary reference point.

The effective Z coordinate of the probe center was found by a semiautomatic procedure. The geometrical midplane of the magnetic pin assembly was placed near the geometrical midplane of the magnet gap. The Wild N3 level located at L1, Fig. C.1, was used to measure

the actual location. It was assumed that the magnetic midplane of the pin structure coincided with the geometric midplane. The Hall probe was placed about 0.13 cm away from the axis of the pins. probe was moved manually in the Z direction in steps of 0.25 mm over a range of about ± 1.5 mm and the coordinate value was entered into the computer after each move was completed. The computer then took the Hall probe and NMR probe readings. After all the desired points had been entered, the computer calculated the coordinate of the peak value and the offset between this and the starting value. The Hall probe was then moved by the calculated offset distance and the elevation of the side target near the probe was determined. This gave the distance between the effective vertical center point of the Hall probe and the side target. The probe was then moved to the geometrical midplane of the magnet and then to the primary reference location. This is the point at which the probe is initially located at the start of each run. The elevation of the probe target was then recorded as that reading of the Wild level scale that corresponded to the placement of the probe on the geometrical midplane of the magnet at (0,0).

E. Gap Measurements

E.1 Pole Faces

After the magnet was leveled with a bubble level, section D.l.b., and before it was turned on for the first time, measurements of the levelness of the two pole faces were made with the Wild N3 optical level located at point L1, Fig. C.l.

E.l.a. Level

The Wild level was set at a height to make an arbitrary reference elevation near midrange to be about at the height of the geometrical midplane of the gap. A single 5 cm long optical scale was used to measure the distance between the reference elevation of the level and each pole face at points over the entire flat area of the pole. The points selected lay on lines across the gap and parallel to the X axis. There were three points on each line, one in the center of the pole and two at about ±6.3 cm. There were five of these lines along the axis of the gap, one in each of the five blocks of laminations which were in the core assembly.

The readings on each of the lines across the gap and on each pole had standard deviations from the average values that were less than 12 μm (0.0005 in); therefore, the average values were considered in the analysis that follows. The measured distances to the pole tips are shown in Table E.1.

Table E.l

Distances of the Reference Level Elevation to the Pole Tips

	Distances t	o Pole Tips	
Y	Bottom	Тор	Sum
(cm)	(cm)	(cm)	(cm)
-48.26	3.698	2.002	5.700
-25.4	3.696	2.004	5.700
0.0	3.693	2.009	5.702
25.4	3.696	2.009	5.705
48.26	3.696	2.009	5.705

Straight lines were fit to the values for each pole by a least squares method. The resulting slopes of the bottom and top poles were -1.6×10^{-5} cm/cm and $+7.8 \times 10^{-5}$ cm/cm. The bottom pole was flat to well within the graduations of the bubble level used to level the magnet. The top pole, however, did have a slope that was

measurably different from that of top surface of the magnet; the value, however, corresponded to only about 78 μm over the length of the magnet.

E.l.b. Gap Height and Geometrical Midplane

The sums of the readings for bottom and top poles in Table E.1 give the gap heights. These sums are also listed in Table E.1 and show that the gap height at the magnet center was 5.702 cm (2.245 in). The total variation of the gap height was $50~\mu m$ (0.002 in) with the minimum at the left end.

The geometrical midplane is located at one half the gap height above the bottom poleface. The slope of the half gap points was found to be 3.1 x 10^{-5} cm/cm. Adding this value to the scope of bottom pole gives a slope of the geometrical midplane of 1.5 x 10^{-5} cm/cm. This slope corresponds to about 15 μ m (0.0006 in) variation over the length of the magnet.

E.2. Gap Height vs Current

Because this dipole is a C-magnet, the gap height does decrease as the excitation current is increased. To measure the size of this change, five optical scales were placed on the top surface of the magnet core. One was placed in each lamination block, and viewed with a Wild N3 optical level setup at L2 (Fig. C.1). The scales were placed directly above the centerline of the gap and readings were taken from 0 A to 1200 A.

There were total variations of about $80~\mu m$ between the five scales at any given current setting. The readings for all five scales were fit with a simple polynomial of degree 2 by a least squares method resulting in a standard deviation of $28~\mu m$ for the fit. This technique was judged to be appropriate since the stand error of the fit was comparable to the resolution of the measurements. The resulting coefficients of the fit are listed in Table E.2.

Table E.2

Coefficients of Top Pole Defection vs Current

i	Value		
0	0.0 μm.		
1	$-24.2 \mu \text{m/kA}_{2}$		
2	-123.4 um/kA^2		

At 600 A, the calculated deflection was 59 μ m.

The deflections of the bottom pole were also measured using a nonmagnetic target, spring loaded against the bottom pole face at (0,0). These

measurements showed no measurable deflections; therefore, the top pole measurements are equivalent to gap height changes as a function of current. This change was 153 μ m (0.3%) at 1000 MeV. The slope of the pole was not measured in this process but an estimate was made by using a simple geometrical model, which assumed pivoting at the inside edge of the back yoke at the midplane. This estimate gave a total variation of the gap height of 108 μ m (0.2%) at the 1000 MeV excitation.

The elevation of the geometrical midplane also changes as a function of the excitation current. This was 76 μm over the range of 0 A to 1018 A (1000 MeV). When the center of the Hall probe was set to the geometrical midplane by the procedure described in section D.2.d., the current was about 600 A. This meant that the Hall probe was not at the geometrical midplane when the 1000 MeV measurements were made but the error was only about 50 μm .

F. Vertical Field Measurements

F.1. Turn-On, Turn-Off, and Warm-Up Procedures

The gross changes in the excitation current of the magnet were always done in a current loop of $0A \rightarrow 1200$ A $\rightarrow 0A$ at a rate of about 25 A/sec. The final settings were always reached on the increasing side of the loop. If the magnet supply was tripped off unexpectedly, then the current was run two times through the entire loop. Bidirectional adjustments were made for changes of around 0.1% or less to set the desired current for a particular run. Whenever the magnet was turned-off, the current was always run up to 1200 A and then down to 0A at a rate of about 25 A/sec.

The magnet supply current and all the electrical components in the measuring system were turned on at least two hours before any measurements were taken. It was found, however, that times of about eight hours were actually required to reach the maximum temperature stability for all of the components. As a result, most of the measurements were taken during two periods of four to five days each, during which times none of the elements of the measuring system was turned-off.

The supply currents associated with the three energies of interest for these measurements are listed in Table F.1.

Table F.l

Supply	Current	vs	Energy
_			_
Energy		(Current
(MeV)			(A)
			
100.7			87.36
800			730.09
1000			1018.41

These currents were those used in the Aladdin accelerator ring and were based on the original measurements.

F.2. Data Taking Details

F.2.a. Geometries

F.2.a.l. Universe

The term "universe" is used to describe the rectangular space inside of which all movements of the Hall probe were made. Two such regions were used, one for the measurements at each end of the magnet. The parameters of interest are with respect to the absolute coordinate system and are listed in Table F.2.

Table F.2
Universe Parameters

	Left Side	Right Side
Minimum X coordinate (cm)	-24.64	-24.64
Minimum Y coordinate (cm)	-97.79	- 2.54
Length of X side (cm)	49.53	49.53
Length of Y side (cm)	100.33	100.33

F.2.b. Scan Lines

The points at which the vertical field values were measured were chosen to allow the axial field integrals to be found without requiring any interpolation of the measured data. The locations of the points were chosen to make each axial integral equivalent to a measurement of the field integral with a long, curved search coil. If a search coil were actually used, it probably would be constructed to have a uniform radius of curvature over the entire length. A modified search coil which is curved only over the 30° arc of the magnet bend and has straight ends which are tangent to the arc, however, is much more representative of the actual beam path through the magnet. This modified search coil model was, therefore, the one chosen to select the path for the axial points.

The field measurements across the gap were obtained by moving the "search coil" only in the X direction. The path along the axial center line of the scan is shown in Fig. F.l relative to the absolute coordinate system for the left side of the magnet. The arc part of the path had a length of 15° and a radius of curvature of 208.3 cm (82 in). The tangent, end line was 43.18 cm long. The measured points were distributed in five sections along this line to provide more concentrated measurements in the gap center and at the gap edges. The parameters for these axial line sections are listed in Table F.3.

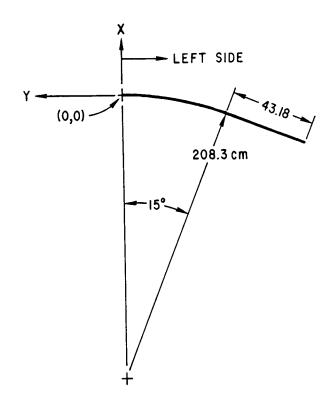


Figure F.1. Central path through the left side of the scan geometry.

Table F.3

Parameters for the Axial Line Sections

Section No.	Section Type	Starting Value	End Value	Step Size
		0.09	0.75°	0.375°
1	Arc	0.0°		
2	Arc	0.375°	11.25°	0.75°
3	Arc	11.25°	15.00°	0.375°
4	Straight	0.0 cm	12.70 cm	1.27 cm
5	Straight	12.70 cm	43.18 cm	2.54 cm

The lines across the gap are called "radial" scan lines even though they run parallel to the X-axis and are not truly radial except for the line at Y = 0. Measurements were taken over ± 7.62 cm relative to the center path in three sections of each radial line. The parameters for these radial line sections are listed in Table F.4.

Table F.4

Parameters for the Radial Line Sections

Section No	Starting Value (cm)	End Value (cm)	Step Size (cm)	
1 2	-7.62 -5.08	-5.08 5.08	1.27 0.635	
3	5.08	7.62	1.27	

F.2.b. Multiple Readings

Whenever the Hall probe or any of the auxiliary probes was read, three readings were actually taken; these readings were taken with random delays between successive attempts. This process was used to minimize the errors caused by periodic electrical noise that may exist in a measuring environment; one, for example, that contains an operating accelerator. It will also minimize the effects of the probe vibrations that may occur after the probe, mounted on the end of a long, flexible boom, reaches the desired location.

The three values are averaged and the deviation from this average is found for each of the measured numbers. If the deviation for any reading is larger than 1 gauss or 0.01%, whichever is larger, then three new readings are taken. This process continues until the test is satisfied.

F.2.c. Readings Taken During a Scan

F.2.c.l. Parameters Measured

Of course, the vertical field value is measured at every point in the scan geometry. These values were measured with the Hall probe which was held in a small aluminum fixture at the end of a laminated fiberglass and epoxy tube. This put the probe at about $0.92 \, \mathrm{m}$ from the center of the manipulator support platform. An entire scan required about $100 \, \mathrm{minutes}$ to complete. Besides the vertical field values, the values from the auxiliary probes were read before and after each radial scan. The following are the auxiliary probes that were utilized. The NMR was used to measure the central field at a fixed point during all scans taken at $800 \, \mathrm{and} \, 1000 \, \mathrm{MeV}$. It was positioned approximately at $\mathrm{X} = 0 \, \mathrm{and} \, \mathrm{Y} = +5 \, \mathrm{cm}$ for the runs at the left side of the magnet and $\mathrm{Y} = -5 \, \mathrm{cm}$ for the runs at the right

side. The exact location of the NMR probe was adjusted to allow the magnetometer to find a stable tune. Once located for the measurements on a given side of the magnet, however, it was not moved again until all measurements on that side had been completed. The resulting values were then used to normalize the vertical field values measured by the Hall probe.

For the 100 MeV case, the NMR could not be used, but the ADC was used to measure the output of the precision transductor monitoring the supply current. These readings were used for normalizing the 100 MeV data.

The final parameter measured was the temperature of the Hall probe. The temperature sensor described in section B.3.b. was mounted directly beneath the Hall element with thermally conductive grease between them. This sensor was also carried inside the aluminum fixture holding the Hall probe.

F.2.c.2. Repeatability of the Vertical Field Measurements

To get some idea of how well the measuring system could reproducably measure the vertical field values, one of the scans was redone immediately upon completion. Whenever a scan was completed, the probe was returned to the primary reference point. For the repeat run no adjustments in this starting point were made. The vertical field values in the two runs were normalized internally first to the associated NMR readings. The two runs were then normalized to each other by using the first NMR reading in each run. After these normalizing steps had been completed, the deviations of the measured values from the average value for each point were found. The RMS deviation for the entire scan geometry was 1.0 gauss and for the points with values greater than 1.53 T, i.e., on the central field plateau, the RMS deviation was 0.9 gauss (< 0.006%).

F.2.d. Reference Checks

Before every scan was begun, the current was set to the desired value and the Hall probe calibration constant was adjusted to

the value determined in the procedures described in section B.2.a. After each run was completed, the Hall probe calibration constant was recorded. These values had a standard deviation of about 0.01%.

The location of the Hall probe with respect to the primary reference points was also checked from time to time and found to be shifted by \leq 50 μm .

F.2.e. Storage Media and Data Files

The vertical fields were measured for excitations of 1000 MeV, 800 MeV, and 100 MeV. At each excitation, data was taken at various vertical positions relative to the geometrical midplane selected from the values 0, ±.635, ±1.27, and ±1.7272 cm. The combinations of excitation, plane elevation and magnet end (L or R) for which measurements were taken are summarized in Table F.5 along with the names of the raw data files and the names of the unified (processed) data files. The raw data files are stored and backed-up on magnetic tapes read by the Hewlett Packard 9845 computer used to take the data. These data were used for all the analysis steps described here. These files were also stored on media, disks and tapes, accessible to the HEP/VAX computer at Argonne. These files are then also accessible to other users through node named ANLHEP on the BITNET network.

The raw data files are stored as card images in the VAX. There are some descriptive entries at the top of each file with the scan data following. Each scan data card contains values for a single point in the scan geometry in a 6F10.4 format. The values include the vertical field (gauss), the X, Y, and Z coordinates (cm), the normalizing probe value (gauss or volts), and the Hall probe temperature (°C).

The unified (processed) data files contain data that has been normalized and merged with the data from the corresponding scan at the same excitation and vertical plane location from the other end of the magnet if one exists. For planes other than the geometrical midplane, the values are also normalized to the data in the midplane scan. These unified files are assembled with card images like the raw data files except that the point data includes only the vertical field value (gauss) and X, Y, and Z coordinates (cm).

The file names in the VAX have the following form: ajjYbkkc.Enn

where

a = B for Bending magnet

jj = 03 is magnet number

Y = the Y coordinate of plane follows

b = P for Plus (above geometrical midplane)

= M for Minus (below geometrical midplane)

kk = Integer part of the Y value (mm)

c = L for raw data at left end of magnet

= R for raw data at right end of magnet

= U for unified data

E = the Energy of excitation follows

nn = energy of excitation divided by 100 MeV

Table F.5

Summary of Data Files

			UNIFIED DATA			
		Lef	t End	Ri	ght End	FILES
E	Y	HP	VAX	HP	VAX	VAX
(MeV)	(mm)					
1000	17.27 12.70 6.35 0.00 - 6.35 -12.70 -17.27	AL.P13 AL.P10 AL.P9 AL.P15 AL.P14 AL.P11 AL.P12	B03YP17L.E10 B03YP12L.E10 B03YP06L.E10 B03YP00L.E10 B03YM06L.E10 B03YM12L.E10 B03YM17L.E10	AL.P33 AL.P32 AL.P29 AL.P28 AL.P30 AL.P31 AL.P34	B03YP17R.E10 B03YP12R.E10 B03YP06R.E10 B03YP00R.E10 B03YM06R.E10 B03YM12R.E10 B03YM17R.E10	B03YP17U.E10 B03YP12U.E10 B03YP06U.E10 B03YP00U.E10 B03YM06U.E10 B03YM12U.E10 B03YM17U.E10
800	6.35 0.00 -6.35	AL.P24 AL.P23 AL.P25	B03YP06L.E08 B03YP00L.E08 B03YM06L.E08	AL.P26	B03YPOOR.E08	B03YP06U.E08 BP3YP00U.E08 BP3YM06U.E08
100	17.27 12.70 6.35 0.00 - 6.35 -12.70 -17.27	AL.P20 AL.P19 AL.P16 AL.P22 AL.017 AL.P18 AL.P21	B03YP17L.E01 B03YP12L.E01 B03YP06L.E01 B03YP00L.E01 B03YM06L.E01 B03YM12L.E01 B03YM17L.E01	AL.P27	B03YP00R.E01	B03YP17U.E01 B03YP12U.E01 B03YP06U.E01 B03YP00U.E01 B03YM06U.E01 B03YM12U.E01 B03YM17U.E01

F.2.f. Estimated Measurement Error

An estimate of the RMS error in the measured vertical field values involves contributions from a number of sources. The constituents of the error in the Hall probe portion are listed in Table F.6. The values listed are the RMS errors as measured or estimated. The total was found by adding the constituents in quadrature.

Table F.6
Hall Probe Center Position Error (µm)

	Axis			Reference	
	X	Y	Z	Section	
Setting optics to reference targets	18	18	-	*	
Setting magnet to optics	18	18	8	*	
Manipulator errors	38	64	190	B.1.a.	
Setting probe to absolute system: Set to primary reference point	18	18	-	*	
Manipulator errors at primary ref.	38	64	-	B.1.a.	
Probe center	8	18	13	B.2.b.2.	
Total	63	97	191		

* Estimated

The errors in the position of the Hall probe contribute to the errors in the vertical field values most significantly in regions where there are large field gradients; the field errors were calculated for one representative scan line in both the axial and radial directions. The chosen axial and radial lines were the paths through the left side of the reference data listed in Appendix G which had the largest gradients. The effective errors for the axial and radial directions were calculated separately by finding the square root of the corresponding sum of the errors at the points, weighted by the corresponding step size relative to the entire length of the line. The final error corresponding to the axial line was reduced slightly to compensate for the fact that the other axial scan lines have smaller gradients. The errors on the radial line were similarly summed only over ± 5.08 cm since the end points were not used in any of the analyses steps to obtain the harmonic coefficients. resulting errors are listed in Table F.7.

There are also errors related to the temperature fluctuations of the Hall probe. In general, the probe temperature was a little higher when it was inside the magnet gap. Total variations were less than 4.6° C in any given scan and less than 5° C over all the measurements. This corresponds to a total field variation of 0.015% (see section B.2.c.) or 3.2 gauss at 1.6 T. This was assumed to be three standard deviations, probably an over estimate.

The constituents of the estimated measurement error of the vertical field at any given point are listed in Table F.7. The effective total was found by adding the individual components in quadrature.

Table F.7

Constituents of the Estimated Measurement

Error (G) in the Vertical Field Values

Central field	0.15 T	1.55 T	Reference Section
Due to manipulator position errors	0.5	3.4	F.2.f.
NMR errors	0.1	0.1	B.3.a.
Hall probe calibration	2.0*	2.9	B.2.c.
Repeatability	0.5*	1.0	F.2.c.2.
Temperature stability	1.1	1.1	B.2.c.
Total	2.4	4.7	

^{*} Estimated values

The 1.55 T value was applied to both the 1000~MeV and 800~MeV data.

G. Data Analysis Programs

This section contains brief descriptions of the various programs used to process the measured data. Some are required to extract effective lengths and harmonic coefficients of the fields while others are useful in making tabular listings and plots of the data. These tables and plots are not actually needed to extract the ultimately required harmonic coefficients. They can, however, be useful in doing manual calculations used to validate other program sections and to qualitatively inspect the measured data.

Example tables and plots produced by the various programs are contained in the Appendices. The same set of raw data was used as the ultimate source for all of these examples. This data was for a magnet excitation of 1000 MeV with the probe on the geometrical midplane and is called the reference data.

G.1 Data Presentation

These programs are used only to provide listings of the measured and processed data and to provide 3D plots.

G.l.a. Tabular Listings

G.l.a.l. Field and X, Y, Z coordinates.

Field values and the X, Y, and Z coordinates can be separately listed in tables organized by successive radial and axial scan lines. The rows are labeled with the corresponding x position relative to the central path and the columns are labeled with the axial position. The axial scans are divided into separate sections, each containing a part of the path along either an arc or a tangent line region of the path. The arc section columns are labeled by the angular distance from the center of the magnet. The tangent line section columns are labeled by the linear distance from the end of the arc section to which it is tangent. An example of a table for the raw field data for the left side scan of the reference data is contained in Appendix I. The tables for the X and Y coordinates for the measured points in the left side scan of the reference data set are contained in Appendices II and III. The right side values for X are identical to those shown; the right side Y values are opposite in sign. The Z coordinate values for all data points are contained in Appendix IV. Note that the Z coordinates

vary from point to point. The value at (0,0) is exactly the value quoted as the vertical position of the plane for the data with respect to the geometric midplane. The variations correspond to the calculated Z-coordinate shifts; these are not corrected during a run for this manually adjusted axis. G.1.b.2. Logged Readings of Auxiliary Probes

Each auxiliary probe is read periodically during a run. The values and the associated dates and times for each reading can be listed separately for each auxiliary probe. The average value, the standard deviation, and the total range of variation during the run are also listed. Representative tables are shown in Appendix V for the NMR and Hall probe temperature readings for the left side data of the reference set.

G.l.b. 3D Plots of Field Values

An isometric plot can be made for each individual scan data set. This does not have hidden line removal but allows the quick identification of runs that contain obviously questionable values. A sample plot is shown in Appendix VI for the left side scan of the reference data.

G.2. Normalize, Match, and Merge

A table containing the field values at all points in the scan geometry after the values from the two associated runs have been normalized, matched, and merged is contained in Appendix VII.

G.2.a. Normalizing

The 21 field values in each radial scan line of each data taking run were first normalized by multiplying by the appropriate factor. The reference value used for normalizing was selected as the first reading taken in the run with the NMR probe. The normalizing factor that was used for each radial scan line was the average value of the NMR readings taken at each end of the corresponding scan line divided by the reference reading.

G.2.b. Matching

Much of the analysis involved data constructed by merging the normalized data taken during two separate runs, one from the left side of the magnet and one from the right side at the corresponding vertical position and magnet excitation, into a single data set. The NMR could not be used to match these two data sets since the NMR probe location was different for the data taken at each side of the magnet. The left side data was used as the primary data set and the normalized values were not changed. The right side data, however, was changed by multiplying all values by a factor that made the value at (0,0) equal to that in the left side data set. This produced values for the three overlapping scan lines which gave an RMS difference of about 0.01%.

The matching of the data from corresponding runs taken on the left and right sides of the magnet was done automatically when merging was specified. Data taken at the same excitation but at different elevations, however, had to be matched to the midplane data. This matching was accomplished by manually specifying the multiplication factor for the primary, left side, data. The factor was the ratio of the corresponding reference NMR readings that were used to normalize the two left side data sets being matched. These reference NMR values are displayed during the regular normalizing procedures.

G.2.c. Merging

The data in the two corresponding runs at the left and right ends of the magnet for a given vertical plane and excitation were merged into one unified data set containing the normalized and matched values of the vertical field for the entire magnet geometry. Only one of the radial scan lines from the three overlapping pairs of lines taken in the two runs was included in the merged data set. The center line was always taken from the left side data.

G.3 Field Integration

The measured field values, as was described in section F.2.a.2., are located on an arc with a radius of 2.083 m and a length of 30° centered in the gap and on two straight line sections each 43.18 cm long, and tangent to the arc at each end. The center (X = 0) axial scan line passes through the (0,0) point. Other axial scans were taken by moving this center scan line in only the X direction (i.e., parallel to the nominal end planes of the magnet).

The field integration was done for each axial scan line by finding the field value at each point and the value equal to one half the distance between the points on each side of the point of interest. The product of these values was summed over the entire length of each scan line specified

to find the integral. The end points of the line to be integrated could be manually specified.

The effective length was determined for each axial scan line by dividing the field integral by the field value on the same scan line but at the axial center location (Y = 0). When the data from only one side was analyzed, the effective length was translated into a location, (X, Y), of the intersection of the path of interest and the effective edge. Using these coordinates for scans across the gap the effective edge angle of the magnetic field can be determined. In Appendix VIII, there are two tables of field integrals and effective lengths associated with the reference data set. One table is for only the left side data; the second table is for the entire reference data set, for both sides.

In addition to integrating the values over the axial paths through the entire magnet and for all paths across the gap, any subsection of the data could also be handled. This allowed, for example, the decoupling of the central field errors from the error contributions at the two ends of the gap.

G.4 Least Squares Fitting

Polynomials in X, the radial position with respect to the gap center, are fit to field values or field integrals by a least squares fitting method. The polynomials used were primarily of the following form:

$$V = \sum_{i=0}^{D} b_i X^i / i!$$
 G1

In some special cases coefficients of the form $A_i = b_i/i!$ are used.

The coefficients, b_i , for the polynomials in X and the associated standard errors which resulted from the fits were determined by a matrix method.^{3,4} The complete solution process does include an iterative loop which involves doing successive fits and testing the resulting standard deviations, σ . The process was continued until σ increased. This type of solution greatly reduces the possibility of getting a bad fit as a result of round off errors occuring during the matrix inversion step. It has been found that only two or three iterations are generally required to converge on a solution. The χ^2 , and the χ^2 per degree of freedom as well as the standard deviation of the fit are printed out for each attempt.

G.5 Harmonic Field Coefficients

The primary goal of the field measurements of this magnet was to determine the integrated strengths of the vertical field harmonics up to at least the sextupole component, i = 2. The standard errors of the calculated strengths were also required. Two methods were used to find these values. A primary method was used for all the results tabulated in this report. The secondary method was used to verify the primary results and to provide plots of the strengths of each harmonic component calculated along the path through the magnet.

G.5.a. Primary method

The primary method used to determine the harmonic coefficients for the magnet was to first integrate the vertical field values along the specified paths through the magnet and then to perform a least squares fit to the integrals found for a polynomial in X, the radial position of the path with respect to the center path. Examples of the results of this calculation are shown in the tables in Appendix VIII.

G.5.b. Secondary method

The secondary method used to determine the harmonic coefficients for the magnet was to first perform a least squares fit of a polynomial in X to the measured values for each radial scan line and then to integrate the resulting coefficients. The fitting program was the same as that used for the primary method and is described above in section G.4. The measured field values were fit in this case and the measurement error used was only a field value and not multiplied by the effective length and not divided by $N^{1/2}$ (See H.4.a). The integrating program was the same as described in section G.3 except that the calculated coefficients were integrated rather then the measured field values. The squares of the errors were integrated rather than the error values and the final coefficient error was the square root of the above integral divided by the total path length.

The coefficients and standard deviations of the fits were listed for each radial scan line and the coefficients were plotted as a function of the position along the center path (Z). The list and plots were useful in making subjective evaluations of the quality of the measured data and to locate isolated peculiarities in the field shapes through the magnet.

Examples of the lists and plots for this procedure are shown in Appendix IX and section H.4.d.7. These results correspond to the same problem as contained in the tables in Appendix VIII for the total reference data set. Plots of the coefficients at 100 MeV and Y = 0 are shown in Appendix IX.C for comparison.

G.6. Vertical Midplane

The process described here to locate the magnetic midplane was the most involved and time consuming operation in the analysis of the data for this magnet. The errors associated with the calculated values at each point are expected to be large because of two facts. First, there is a large number of calculation steps required to find the value at each point (X,Y) in the scan geometry. Second, the spread in the field values that had to be fit was often comparable or even smaller than the estimated measurement errors of the field. The final numbers, however, that were used to define the location and orientation of the midplane involve averages over 663 to 1649 points in the scan geometry.

This process was begun by reading the data for each elevation that was measured and normalizing it. The left side field values were also normalized to the midplane NMR probe reading. For data that included scans from both sides of the magnet (1000 MeV), the two halves were matched to each other and then merged into combined data arrays. The normalizing, matching, and merging steps were the same as those used to define the data that was used to find the field integrals and subsequent harmonic coefficients. The field value and Z-coordinate (vertical) for all points in each plane are placed in two large arrays.

The location of the magnetic midplane at each point in the scan geometry was found by fitting a polynomial to the field values vs the actual Z-coordinate corresponding to the value in each plane. The polynomial was of the form $V = \sum_{i=0}^{D} A_i Z^i$. The location of the position at which the slope of the polynomial was zero was defined as the location of the magnetic midplane. This location was found for every point in the scan geometry and stored in the arrays that normally contain the field values and the Z-coordinates; this allowed postprocessing to be done with the same programs that were used to display and analyze the regular data.

H. Results

H.l Field vs Current

The magnet was energized with the turn-on procedure described in section F.l. The current was measured with the precision transductor in the supply.

The Hall probe was placed approximately at (0,0,0) and the NMR at about (0,0,-1.7 cm). The current was changed from about 50 A to 1200 A in steps of about 50 A or 100 A and at time intervals of 4 to 16 minutes. The field readings were taken with both probes wherever possible. Care was taken to only increase the current for all steps up to 1200 A. The measured values of current and magnetic field are contained in Table H.l and the associated plot for the Hall probe readings of vertical field are contained in Fig. H.l. The two field readings agreed to around 0.5%, but the Hall probe had not been calibrated for these measurements.

Table H.l

Field at (0,0,0) versus Supply Current

Current (A)	Hall (Gauss)	NMR (Gauss)	Comments
50.2	867		
50.2	1781		
102.9			
150.2	2613	2602.6	NMD #4 amaka
205.8	3594	3602.6	NMR #4 probe
249.9	4360		
299.9	5230		
350.0	6133		
400.0	7029	7011.4	
450.1	7877		
500.0	8750	8720.9	
550.6	9616		
600.3	10472	10417.4	
650.2	11297		
700.4	12105	12043.0	NMR #5 probe
750.9	12823		•
805.2	13588	13518.0	
850.7	14044	14009.3	
	14586	14512.3	
900.0		14985.6	
950.1	15025		Man - den from
1000.0	15503	15427.4	NMR noisy from
1100.0	16314	16236.7	here on up.
1150.0	16688	16610	
1200.0	17044	16966	
0	≈ 50		

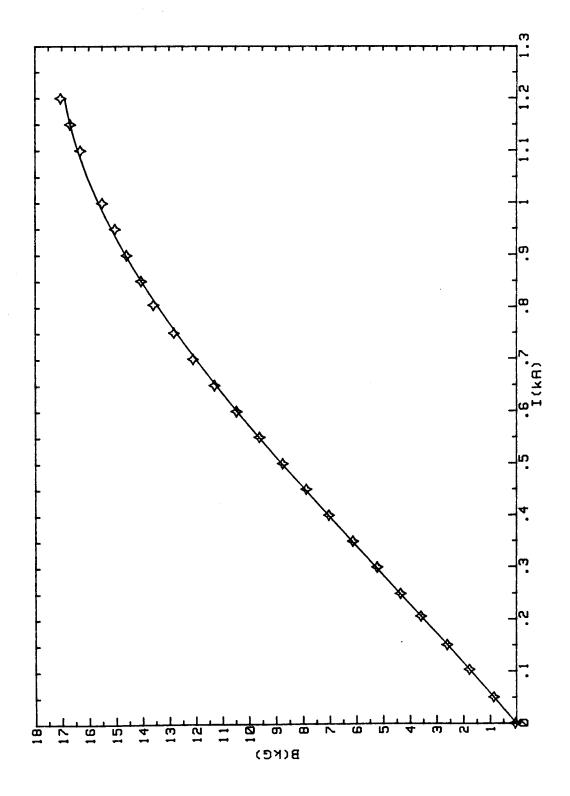


Figure H.1 Vertical magnetic field at (0,0) vs supply current.

H.2 Field Integrals

The measured values of the vertical fields in each run were normalized and the runs for the corresponding excitations and elevations were merged. This processed data is called the unified data. The field integrals were calculated from the unified data and the results are listed in Tables H.2.1, H.2.2, and H.2.3. These contain all of the integrals at each excitation, for all applicable elevations and at all scan positions across the gap between ± 5.08 cm (± 2.0 inches). Each column contains a U or L which designates the data file size. The U type files contain data from BOTH sides of the magnet while the L type files contain only LEFT side data but the integrals listed are the calculated values multiplied by 2 so they can be more easily compared to the U type values. These comparisons are only made here for 800 MeV and 100 MeV excitations at an elevation of Y = 0. The differences that result from finding the integrals in the two ways are around 0.15%.

Table H.2.1

1000 MeV Field Integrals (T-m)

Type	Ū	U	U	U	Ŭ	U	U
Y(mm)	17.27	12.70	6.35	0.00	-6.35	-12.70	-17.27
X							
(cm)							
5.08	1.7540	1.7508	1.7471	1.7459	1.7471	1.7525	1.7546
4.44	1.7550	1.7531	1.7509	1.7503	1.7510	1.7548	1.7555
3.81	1.7559	1.7548	1.7534	1.7531	1.7534	1.7564	1.7564
3.18	1.7566	1.7559	1.7549	1.7548	1.7550	1.7575	1.7570
2.54	1.7571	1.7566	1.7559	1.7559	1.7559	1.7581	1.7574
1.90	1.7573	1.7570	1.7564	1.7565	1.7565	1.7585	1.7577
1.27	1.7574	1.7572	1.7567	1.7567	1.7567	1.7587	1.7577
0.64	1.7573	1.7571	1.7566	1.7566	1.7566	1.7585	1.7577
0.00	1.7570	1.7567	1.7562	1.7562	1.7562	1.7582	1.7574
-0.64	1.7564	1.7562	1.7557	1.7556	1.7556	1.7577	1.7569
-1.27	1.7557	1.7553	1.7547	1.7546	1.7547	1.7569	1.7562
-1.90	1.7547	1.7542	1.7534	1.7532	1.7534	1.7558	1.7553
-2.54	1.7535	1.7527	1.7516	1.7513	1.7516	1.7543	1.7540
-3.18	1.7519	1.7506	1.7490	1.7486	1.7490	1.7523	1.7525
-3.81	1.7500	1.7480	1.7455	1.7447	1.7455	1.7495	1.7506
-4.44	1.7477	1.7444	1.7405	1.7391	1.7403	1.7459	1.7482
-5.08	1.7451	1.7395	1.7331	1.7306	1.7327	1.7408	1.7455

Table H.2.2

800 MeV Field Integrals (T-m)

Туре	L	Ŭ	L	L
Y(mm)	6.35	0.00	0.00	-6.35
X				
(cm)				
5.08	1.4145	1.4155	1.4138	1.4138
4.44	1.4158	1.4171	1.4154	1.4152
3.81	1.4166	1.4180	1.4163	1.4160
3.18	1.4169	1.4185	1.4168	1.4165
2.54	1.4172	1.4187	1.4171	1.4167
1.90	1.4173	1.4188	1.4172	1.4168
1.27	1.4172	1.4188	1.4172	1.4168
0.64	1.4171	1.4187	1.4170	1.4166
0.00	1.4168	1.4184	1.4168	1.4164
-0.64	1.4165	1.4180	1.4164	1.4161
-1.27	1.4160	1.4175	1.4159	1.4156
-1.90	1.4153	1.4169	1.4152	1.4150
-2.54	1.4145	1.4160	1.4143	1.4141
-3.18	1.4133	1.4147	1.4131	1.4129
-3.18 -3.81	1.4117	1.4130	1.4113	1.4113
-4.44	1.4095	1.4105	1.4088	1.4090
-4.44 -5.08	1.4062	1.4065	1.4048	1.4055

Table H.2.3

100 MeV Field Integrals (T-m)

Type	L	L	L	Ū	L	L	L	L
Type		12.70	6.35	0.00	0.00	-6.35	-12.70	-17.27
Y(mm)	17.27	12.70	0.33	0.00	0.00	0.33		
X								
(cm)								
							0 17000	0 17/30
5.08	0.17433	0.17398	0.17406	0.17432	0.17409	0.17372	0.17380	0.17420
4.44	0.17435	0.17399	0.17416	0.17441	0.17417	0.17382	0.17384	0.17421
3.81	0.17436	0.17404	0.17420	0.17447	0.17425	0.17384	0.17386	0.17425
3.18	0.17437	0.17406	0.17424	0.17450	0.17427	0.17389	0.17389	0.17427
2.54	0.17436	0.17408	0.17423	0.17452	0.17430	0.17391	0.17391	0.17427
1.90	0.17440	0.17406	0.17426	0.17453	0.17431	0.17392	0.17393	0.17429
	0.17438	0.17406	0.17425	0.17453	0.17431	0.17392	0.17391	0.17430
1.27			0.17425	0.17451	0.17430	0.17391	0.17391	0.17427
0.64	0.17438	0.17407		0.17449	0.17428	0.17391	0.17388	0.17427
0.00	0.17436	0.17403	0.17423			0.17388	0.17388	0.17425
-0.64	0.17434	0.17402	0.17420	0.17446	0.17425			0.17423
-1.27	0.17428	0.17398	0.17414	0.17442	0.17420	0.17382	0.17383	
-1.90	0.17426	0.17393	0.17410	0.17436	0.17414	0.17378	0.17378	0.17418
-2.54	0.17419	0.17387	0.17401	0.17426	0.17408	0.17369	0.17373	0.17412
-3.18	0.17416	0.17378	0.17393	0.17419	0.17396	0.17360	0.17362	0.17404
-3.81	0.17404	0.17368	0.17379	0.17404	0.17383	0.17347	0.17354	0.17395
-4.44	0.17397	0.17357	0.17365	0.17386	0.17365	0.17330	0.17340	0.17385
-5.08	0.17388	0.17343	0.17341	0.17357	0.17335	0.17306	0.17325	0.17376

The field integrals over the total scan lengths are plotted for Y=0 at 1000 MeV in Fig. H.2 and for 100 MeV in Fig. H.3. The lines through the points are calculated with the corresponding coefficients listed in Table H.4.9.

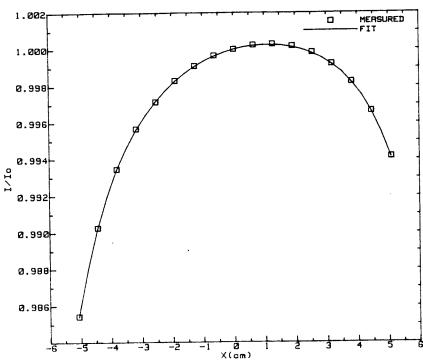


Figure H.2. Field integrals and fit curves at Y = 0 and 1000 MeV vs X.

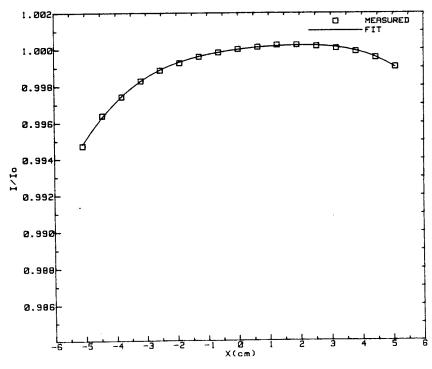


Figure H.3. Field integrals and fit curves at Y = 0 and 100 MeV vs X.

H.3 Effective Lengths

The effective lengths were calculated from the field integrals listed in section H.2 by dividing each integral by the vertical field value at the corresponding X value on the radial scan at Z=0, at the magnet center, and at the corresponding elevation. The resulting effective lengths are listed in Tables H.3.1, H.3.2, and H.3.3. The results are listed here in a similar fashion as was done for the field integrals above. The two types of data are also included here, as was done for the integrals, for the Y=0 cases for the 800 MeV and 100 MeV excitations. The differences here are around 0.13%.

Table H.3.1

1000 MeV Effective Lengths (m)

Type	U	U	Ŭ	U	U	U	Ŭ
Y(mm)	17.27	12.70	6.35	0.00	-6.35	-12.70	-17.27
X							
(cm)							
5.08	1.1273	1.1274	1.1277	1.1280	1.1278	1.1283	1.1273
4.44	1.1277	1.1275	1.1277	1.1279	1.1278	1.1284	1.1276
3.81	1.1278	1.1276	1.1278	1.1280	1.1278	1.1285	1.1277
3.18	1.1279	1.1277	1.1278	1.1280	1.1279	1.1286	1.1279
2.54	1.1279	1.1277	1.1278	1.1279	1.1278	1.1286	1.1279
1.90	1.1280	1.1277	1.1277	1.1279	1.1278	1.1286	1.1279
1.27	1.1278	1.1276	1.1276	1.1278	1.1277	1.1285	1.1278
0.64	1.1278	1.1275	1.1275	1.1277	1.1276	1.1284	1.1278
0.00	1.1276	1.1272	1.1272	1.1274	1.1274	1.1282	1.1275
-0.64	1.1273	1.1270	1.1270	1.1271	1.1271	1.1279	1.1273
-1.27	1.1270	1.1266	1.1265	1.1267	1.1267	1.1275	1.1271
-1.90	1.1266	1.1262	1.1261	1.1262	1.1262	1.1271	1.1266
-2.54	1.1261	1.1257	1.1254	1.1255	1.1255	1.1265	1.1260
-3.18	1.1255	1.1249	1.1246	1.1247	1.1247	1.1258	1.1254
-3.81	1.1248	1.1241	1.1235	1.1236	1.1236	1.1249	1.1246
-4.44	1.1238	1.1229	1.1222	1.1221	1.1223	1.1237	1.1235
-5.08	1.1227	1.1215	1.1205	1.1203	1.1204	1.1221	1.1222

Table H.3.2
800 MeV Effective Lengths (m)

Туре	L	U	L	L
Y(mm)	6.35	0.00	0.00	-6.35
X				
(cm)				
5.08	1.1337	1.1349	1.1336	1.1332
4.44	1.1339	1.1350	1.1337	1.1333
3.81	1.1340	1.1351	1.1338	1.1336
3.18	1.1341	1.1354	1.1340	1.1336
2.54	1.1342	1.1353	1.1340	1.1337
1.90	1.1342	1.1353	1.1340	1.1338
1.27	1.1341	1.1352	1.1339	1.1337
0.64	1.1340	1.1352	1.1339	1.1336
0.00	1.1338	1.1350	1.1337	1.1334
-0.64	1.1336	1.1347	1.1334	1.1332
-1.27	1.1333	1.1344	1.1331	1.1329
-1.90	1.1328	1.1339	1.1326	1.1324
-2.54	1.1323	1.1334	1.1321	1.1318
-3.18	1.1316	1.1327	1.1314	1.1311
-3.10 -3.81	1.1306	1.1316	1.1303	1.1302
-4.44	1.1295	1.1304	1.1291	1.1289
-4.44 -5.08	1.1278	1.1286	1.1273	1.1273

Table H.3.3

100 MeV Effective Lengths (m)

								
Type	L	L	L	U	L	L	L	L
Y(mm)	17.27	12.70	6.35	0.00	0.00	-6.35	-12.70	-17.27
X								
(cm)								
\								
5.08	1.1387	1.1384	1.1379	1.1406	1.1391	1.1367	1.1377	1.1380
4.44	1.1388	1.1387	1.1380	1.1407	1.1391	1.1370	1.1377	1.1381
3.81	1.1394	1.1391	1.1388	1.1411	1.1397	1.1370	1.1381	1.1383
3.18	1.1389	1.1389	1.1388	1.1411	1.1396	1.1373	1.1380	1.1385
2.54	1.1396	1.1298	1.1390	1.1415	1.1400	1.1374	1.1382	1.1385
1.90	1.1391	1.1389	1.1387	1.1412	1.1398	1.1375	1.1383	1.1386
	1.1391	1.1392	1.1391	1.1415	1.1400	1.1475	1.1382	1.1392
1.27		1.1392	1.1384	1.1411	1.1397	1.1374	1.1382	1.1385
0.64	1.1395		1.1384	1.1410	1.1396	1.1374	1.1380	1.1385
0.00	1.1390	1.1387			1.1397	1.1372	1.1377	1.1383
-0.64	1.1387	1.1386	1.1380	1.1410		1.1368	1.1376	1.1382
-1.27	1.1383	1.1384	1.1379	1.1403	1.1388			1.1379
-1.90	1.1382	1.1381	1.1378	1.1401	1.1387	1.1363	1.1373	
-2.54	1.1378	1.1377	1.1375	1.1397	1.1383	1.1355	1.1362	1.1370
-3.18	1.1376	1.1371	1.1370	1.1390	1.1375	1.1349	1.1363	1.1370
-3.81	1.1368	1.1364	1.1361	1.1381	1.1366	1.1340	1.1350	1.1357
-4.44	1.1361	1.1357	1.1352	1.1371	1.1357	1.1334	1.1346	1.1358
-5.08	1.1352	1.1346	1.1336	1.1355	1.1340	1.1318	1.1331	1.1342

H.4 Harmonic Field Coefficients

H.4.a. Estimated Measurement Errors

In order to find the χ^2 for a fit and the errors for each harmonic coefficient, an estimate was needed for the standard measurement error for the values being fit. The estimated error, 4.7 gauss, derived in section F.2.f was used for fits to the field values at 1000 MeV and 800 MeV and 2.4 gauss was used for 100 MeV. For fits of the field integrals, however, the error value above was multiplied by the effective length of the integrated data and divided by N^{1/2}, where N is the number of points used in the integral.

H.4.b. Radial Scan Length Used

The field values were measured across the gap in lines parallel the nominal ends of the magnet. These lines are actually scans in the X direction but are referred to here as "radial" lines. The X coordinates of the points along these lines are relative to the center path through the magnet gap. Data was taken from -5.08 cm (-2.00 in) to +5.08 cm in 0.635 cm (0.25 in) steps and from ± 5.08 cm to ± 7.62 cm $(\pm 3.00$ in) respectively in 1.27 cm (0.5 in) steps.

The points used in determining the harmonic coefficients throughout this report were those between ±5.08 cm. There were several reasons for eliminating the two points on each end. First, the region of real interest is only the center 11.16 cm. Secondly, the points on the ends are in fields with gradients that are about 10 times larger than those in the central span. As a result, the measurement errors corresponding to the probe positioning errors for these end points are much larger. Also they have an effect on the coefficient values that may be disproportionately large compared to the useability of the region containing the points. Thirdly, fits were performed for both ranges of data, full versus central, and the coefficients found for the center fits were not significantly different from those found for the total-fits while requiring a lower degree. The criteria described in section H.4.c. was used to determine the degree of the polynomial to best fit the two data sets. Lastly, there were four data points at each end of the two axial scans at the inside radius edge of the gap that could not be reached by the measuring system. This resulted in zeros in the data. If these axial scans

were included in the fits, the unmeasured points should have been given field values. This procedure, however, was not attempted. H.4.c. Degree of Polynomial Used

The degree of the polynomial used for the fits to all the measured data at 1000 MeV and 800 MeV in this report was 7. This value was determined by performing fits for various degrees to the integrated field values for the entire set of reference data contained in the Appendices. The standard error of the fit, the average χ^2 , and the maximum index of the coefficient which had a value more than two times the corresponding error for each case were examined. The results are listed in Table H.4.1.a. for a measurement error of 4.7 gauss.

Table H.4.1.a.

Goodness of Fit vs Degree for the Central Span in Radius at 1000 MeV

D	Fit Error (gauss)	χ ² /(n-D-1)	Max Index	Time to Solve (sec)
4	16.3 (11.4)	12.0 (5.9)	4 (4)	35
5	13.6 (9.6)	8.4 (4.2)	5 (5)	50
6	1.9 (1.6)	0.16 (0.12)	6 (6)	53
7	1.7 (1.5)	0.13 (0.10)	7 (4)	66
8	1.1 (0.9)	0.06 (0.04)	8 (4)	89
10	1.3 (0.9)	0.07 (0.04)	4 (3)	123

() for the left side data only.

The appropriate choice of degree clearly lies between 6 and 8 as indicated by the average χ^2 values and the maximum index numbers; the value of D = 7 was selected.

A similar process was used to determine the degree of fit appropriate for the 100 MeV data. Because the estimated measurement error is proportionately larger for this data, the proper choice was expected to be smaller than 7. The results of the fits to the 100 MeV data for BOTH sides of the magnet at Y = 0 are listed in Table H.4.1.b.

Table H.4.1.b.

Goodness of Fit vs Degree for 100 MeV

D	Fit Error (gauss)	χ ² /(n-D-1)	Max Index
1	16.6 (12.0)	48.1 (24.9)	1 (1)
2	4.1 (2.8)	2.9 (1.3)	2 (2)
3	2.8 (1.8)	1.4 (0.6)	3 (3)
4	0.8 (0.7)	0.12 (0.08)	4 (4)
5	0.6 (0.5)	0.06 (0.05)	5 (5)
6	0.5 (0.46)	0.045 (0.037)	6 (3)
7	0.53 (0.45)	0.048 (0.035)	6 (2)
8	0.54 (0.48)	0.051 (0.040)	2 (2)

() left side only.

The appropriate choice here lies between 3 and 5; the degree used for the 100 MeV was D = 4. For the 100 MeV data, the left side only type of data forms a majority of the cases analyzed; therefore, these results were considered too.

H.4.d. Harmonic Coefficient Values

H.4.d.l. Representative Coefficient Errors

The coefficients actually calculated were b_0 through b_7 , but all were not significantly different from zero. For integrals involving only the left side data, there were cases (see Table H.4.1., for example,) where b_4 was the highest useable coefficient. This is also high enough to evaluate all the components that may be corrected in the Aladdin ring. The b_4 coefficient, therefore, is the highest one listed in the following tables. The coefficient and associated errors for the reference data are shown in Appendix VIII and are listed below in Table H.4.2 for i=0 through i=4. A similar list is shown in Table H.4.3. for 100 MeV data at Y=0.

Table H.4.2

Harmonic Coefficients and Errors for the Reference Data (1000 MeV at Y = 0)

i	b _i		
0	1.7563	± 5 x 10 ⁻⁶	T-m
1	0.0783	± 0.0005	T-m/m
2	-7.53	± 0.05	$T-m/m^2$
3	100.	± 8.	$T-m/m^3$
4	-10701.	± 550.	$T-m/m^4$

Table H.4.3

Harmonic Coefficients and Errors for Both Sides at 100 MeV at Y = 0

i	b _i			
0	0.17449) ±	2×10^{-6}	T-m
1	0.0036	±	0.0001	T-m/m
2	-0.19	±	0.01	$T-m/m^2$
3	8.4	±	0.3	$T-m/m^3$
4	-1068.	±	44.	$T-m/m^4$

H.4.d.2 Representative Relative Strengths of Harmonics

An alternative way to express the harmonic field strengths is to determine the associated field strength $B_i = b_i r^i/i!$, at a given radius, r(m), from the center path through the magnet. The coefficients above were used with a sample radius of 0.05 m, the assumed radius of the useable magnet aperture. The field values, B_i , for i=0 through i=4 are shown in Table H.4.4.

Table H.4.4

Harmonic Strengths at 0.05 m for 1000 MeV and 100 MeV

	100	00 MeV	100 MeV		
i	B _i (Gauss-m)	B _i /B (%)°	B _i (Gauss-m)	B _i /B _o (%)	
0	17563. ± 0.000005	100.0	1744.9 ± 0.000002	100.0	
1	39. \pm 0.25	0.22 ± 0.001	1.8 ± 0.05	0.10 ± 0.003	
2	$-94. \pm 0.62$	-0.54 ± 0.004	-2.4 ± 0.12	-0.14 ± 0.007	
3	21. ± 1.7	0.12 ± 0.009	1.8 ± 0.06	0.10 ± 0.004	
4	$-28. \pm 1.4$	-0.16 ± 0.008	-2.8 ± 0.11	-0.16 + 0.007	

H.4.d.3. Central Gap vs Gap Ends

There are at least two reasons to try to separate the central part of the scan data from that at the two ends of the magnet. One, it is useful to know the harmonic strengths for the central region relative to those at the ends. Two, there appears to be a displacement of the peak value in the field integrals listed in H.2 with respect to the center scan line through the magnet. Also, the integrals vs X curves do not have symmetric shapes (See Figs. H.2 and H.3). In order to shed more light on these areas, the integrals were found over the central regions of the scans and separate integrals were found for the points at each end. The definition of the "central" region was somewhat arbitrary. Plots of the coefficients for i > 0 found for each radial scan line (see Section H.4.d.7. and Appendix IX) show sharp peaks at the two edges of the magnet. The center was chosen to be as large as possible but not to include any of the edge peaks for any of the coefficients. The reference data set shown in the Appendices was used and the center was selected to include the radial scan numbers 30 through 68 which includes points within ±12.375° with respect to the axial center of the magnet. The two ends were then chosen to include scan numbers 1 through 30 and 68 through 97. The resulting coefficients, the sum of the three regions, and the coefficients for all scan numbers, 1 through 97, for reference, are contained in Table H.4.5 for 1000 MeV and Table H.4.6 for 100 MeV.

Table H.4.5

Harmonic Coefficients, b_i, for Center vs Ends at 1000 MeV

Region 7		C 30-68	EL 68-97	ER+C+EL Σ	TOTAL 1-97
i					
0	0.1818	1.3949	0.1796	1.7563	1.7563
1	0.0312	0.0150	0.0315	0.0777	0.0783
2	-1.925	-3.640	-1.972	-7.537	-7.534
3	44.7	27.9	36.7	109.3	99.8
4	-2435.	-5374.	-2742.	-10551.	-10701.

Table H.4.6

Harmonic Coefficients, b_i for Center vs Ends at 100 MeV

Region Scan #		C 30-68	EL 68 - 97	ER+C+EL Σ	TOTAL 1-97
i					
0	0.01861	0.13756	0.01832	0.17449	0.17449
1	0.0023	-0.0010	0.0023	0.0036	0.0036
2	-0.11	+0.04	-0.12	-0.19	-0.19
3	3.4	1.8	3.2	8.4	8.4
4	-287.	-530 .	-242.	-1059.	-1068.

Relative comparisons of the columns in Tables H.4.5 and H.4.6 may be of interest to some persons so these comparisons were done and the results are contained in Table H.4.7.

Table H.4.7

Relative Strength Differences (%) for the Axial Scan Regions

1000 MeV

i	Σ: Total	C:Σ	(ER+EL):Σ	ER:EL
0	0.0	79.4	20.6	+1.2
1	-0.8	19.3	80.7	-1.0
2	+0.04	48.3	51.7	-2.4
3	+9.5	25.5	74.5	+22
4	-1.4	50.9	49.1	-11
		100 MeV		
0	0.0	78.8	21.2	+1.6
1	0.0	-27.8	127.8	0.0
2	0.0	-21.1	121.1	-8.3
3	0.0	21.4	78.6	+6.2
4	-0.8	-50.0	50.0	+18.6

H.4.d.4. Left Side vs Both Sides

Because of limitations in the time available to make the measurements, every run taken at the left side of the magnet does NOT have a corresponding run at the same excitation and elevation at the right side. In those cases which do not, the results are multiplied by two to provide an estimate of the

values for the whole magnet. It is necessary to estimate what errors are added to the figures when this is done.

In order to estimate the errors, the reference data and the 100 MeV data at Y = 0 were analyzed both ways. Already in sections H.2 and H.3, it was shown that the field integrals and effective lengths obtained from only the left data are within about 0.15% of the corresponding values for the two sided data for 800 MeV and 100 MeV. The resulting field coefficients and relative errors are shown in Table H.4.8.

Table H.4.8

Harmonic Coefficients, b_i, and Standard Errors
for Two-Side and Left-Side Data

Energy (MeV)	i	Both	Left *2	Magnitude Difference
1000	0 1 2 3 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.0025 -0.0009 +0.13 +12. +279.
100	0 1 2 3 4	$\begin{array}{ccccc} 0.17449 & \pm & 0.000002 \\ 0.0036 & \pm & 0.0001 \\ - & 0.19 & \pm & 0.01 \\ 8.4 & \pm & 0.3 \\ -1068. & \pm & 44. \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.0002 0.0 +0.03 -0.2 -107.

H.4.d.5. Coefficient Lists

The harmonic coefficients for all combinations of excitation and elevation for which measurements were taken are listed in Table H.4.9. Each set of coefficients is associated with either a combined data set, U, containing values taken from both sides of the magnet or a data set, L, containing values taken only on the left side. The data type, U or L, is shown for each set of coefficients.

The coefficients for the L type of data are multiplied by two so the results are comparable to the U type values. It should be remembered, however, that there are some added errors associated with these L type values, as described in section H.4.d.4.

Table H.4.9

Harmonic Coefficients

1000 MeV

<u> </u>	Туре	b _O	ъ ₁	b ₂	b ₃	b ₄
(mm)		(T-m)	(T-m/m)	(T-m/m ²)	$(T-m/m^3)$	$(T-m/m^4)$
17.27	U	1.7570	0.0672	- 4.87	10.7	- 6825.
12.70	U	1.7567	0.0712	-5.94	45.3	- 9119.
6.35	ŭ	1.7563	0.0747	-7.13	94.6	-10042.
0.00	Ū	1.7563	0.0783	-7.53	99.8	-10701.
-6.35	U .	1.7563	0.0742	-7.07	103.5	-10371.
-12.70	U	1.7582	0.0651	-5.56	110.2	-10935.
-17.27	บ	1.7574	0.0594	-4.80	62.0	- 5108.
-1/•2/	O	14,5,,,	800 1			
Y	Type	b ₀	ь ₁	b ₂	b ₃	b ₄
(mm)		(T-m)	(T-m/m)	$(T-m/m^2)$	$(T-m/m^3)$	(T-m/m ⁴)
6.35	L	1.4168	0.0469	-2.82	56.3	-336.
0.00	L	1.4168	0.0475	-3.20	68.7	-782.
0.00	U	1.4184	0.0483	-3.15	60.2	-1221.
-6.35	L	1.4164	0.0453	-2.97	53.6	-231.
			100	Me V		
<u> </u>	Туре	b ₀	b ₁	b ₂	b ₃	b ₄
(mm)	••	(T-m)	(T-m/m)	(T-m/m ²)	$(T-m/m^3)$	(T-m/m ⁴)
17.27	L	0.17436	0.0032	-0.21	3.2	-138.
12.70	L L	0.17404	0.0035	-0.23	4.2	-1133.
6.35	L	0.17422	0.0039	-0.21	5.9	-717.
0.00	L	0.17427	0.0036	-0.22	8.2	-961.
0.00	U	0.17449	0.0036	-0.19	8.4	-1068.
-6.35	L	0.17390	0.0033	-0.24	7.3	-691.
		0.17389	0.0033	-0.24	5.1	-215.
-12.70	L			-0.25	3.6	-860.
-17.27	L	0.17428	0.0028	-0.43	J•0	000•

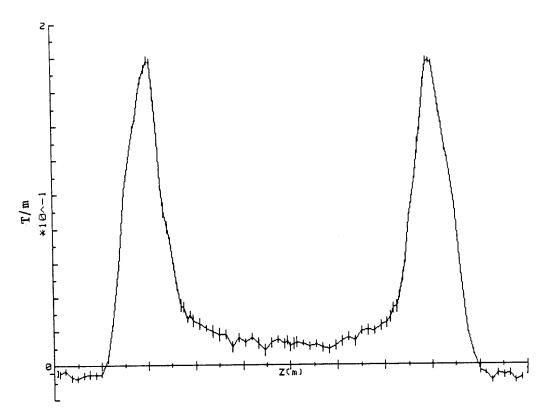
H.4.d.6 Coefficients vs Y (vertical)

The coefficient values expressed in terms of the differences in the magnitudes with respect to the midplane values are listed in Table H.4.10. The midplane values used were for

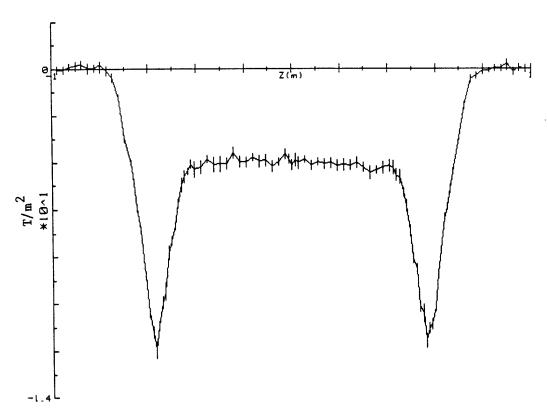
the same data type (U or L) as the off midplane data. For this reason, the L type data at Y=0 is also contained in the 800~MeV and 100~MeV sections of Table H.4.9 even though the U type results are more accurate.

Table H.4.10

Variations of Harmonic Coefficients

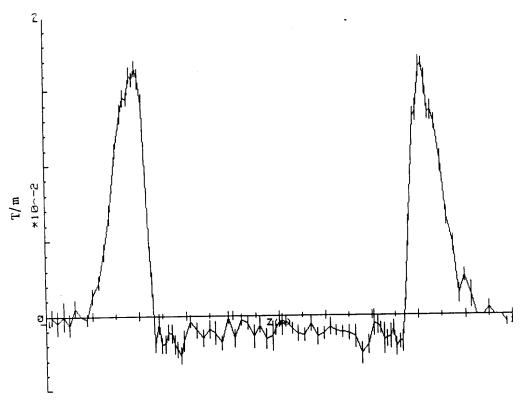

With Respect to the Y = 0 Results

1000 MeV

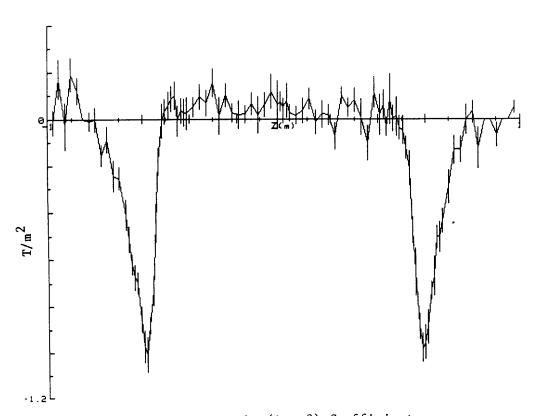

Туре	_p 0	b ₁	b ₂	b ₃	b ₄
	(%)	(%)	(%)	(%)	(%)
U	+.04	-14.	-35.	-89.	-36.
U	+.02	-9.1	-21.	-54.	-15.
U	0.0	- 4.6	- 5.3	- 5.2	- 6.2
U	0.0	0.0	0.0	0.0	0.0
U	0.0	- 5.2	- 6.1	+ 3.7	- 3.
U	+.1	-17.	-26.	+10.	+ 2.
U	+.06	-24.	- 36.	-38.	-52.
		800 1	MeV		
Туре	b ₀	b ₁	b ₂	b ₃	b ₄
	(%)	(%)	(%)	(%)	(%)
L	0.0	-1.3	-12.	-18.	- 57.
L	0.0	0.0	0.0	0.0	0.0
L	-0.03	-4.6	-7. 2	-22.	-70.
		100 !	MeV		
Туре	ъ ₀	b ₁	_{b₂}	_{b3}	b ₄
	(%)	(%)	(%)	(%)	(%)
L	+0.5	-11.	- 4.5	-61.	-
L	-0.13	- 2.8	- 4.5	-49.	
L	-0.03	+83.	- 4.5	-28.	-25.
L	0.0	0.0	0.0	0.	0.
L	-0.21	- 8.3	+ 9.1	-11.	-28.
L	-0.22	-11.	+ 9.1	-38.	-78.
L	-0.01	-22.	+14.	-56.	
	U U U U U U Type L L L L L L L	(%) U +.04 U +.02 U 0.0 U 0.0 U 0.0 U +.1 U +.06 Type b ₀ (%) L 0.0 L -0.03 Type b ₀ (%) L +0.5 L -0.13 L -0.03 L 0.0 L -0.21 L 0.0	(%) U +.04 -14. U +.02 -9.1 U 0.0 -4.6 U 0.0 0.0 U 0.0 -5.2 U +.1 -17. U +.06 -24. Type b ₀ b ₁ (%) L 0.0 -1.3 L 0.0 0.0 L -0.03 -4.6 Type b ₀ (%) Type b ₀ (%) L +0.5 -11. L -0.13 - 2.8 L -0.03 +83. L 0.0 0.0 L -0.21 -8.3 -0.22 -11.	(%) (%) (%) U +.04 -14. -35. U +.02 -9.1 -21. U 0.0 -4.6 -5.3 U 0.0 0.0 0.0 U 0.0 -5.2 -6.1 U +.06 -24. -36. BOO MeV Type b0 b1 b2 (%) (%) (%) L 0.0 0.0 0.0 L -0.03 -4.6 -7.2 100 MeV Type b0 b1 b2 (%) (%) (%) Type b0 b1 b2 (%) (%) (%) Type b0 b1 b2 (%) (%) (%) Type b0 (%) (%) L -0.03 +83. -4.5 L -0.03 +83. -4.5 L -0.21 -8.3 +9.1 L -0.22	(%) (%) (%) (%) U +.04 -14. -35. -89. U +.02 -9.1 -21. -54. U 0.0 -4.6 -5.3 -5.2 U 0.0 0.0 0.0 0.0 U 0.0 -5.2 -6.1 +3.7 U +.1 -17. -26. +10. U +.06 -24. -36. -38. 800 MeV Type b0 b1 b2 b3 (%) (%) (%) (%) L 0.0 0.0 0.0 0.0 L -0.03 -4.6 -7.2 -22. 100 MeV Type b0 b1 b2 b3 (%) (%) (%) (%) L -0.03 +8.3 -4.5 -49. L -0.03 +83. -4.5 -49. L -0.03 +83. -4.5 -28. L -0.21 -

H.4.d.7. Coefficients vs Z(axial)

The harmonic coefficients were calculated for the field values on each radial scan line through the scan geometry at Y = 0 for 1000 MeV. The lists of the resulting coefficients are located in Appendix IX-A. The values were plotted for each coefficient from i = 0 through i = 7. Figure H.4.1. contains plots for the quadrupole and sextupole coefficients (i = 1 and i = 2) for Y = 0 at 1000 MeV. Figure H.4.2. contains the same for 100 MeV.



a. Quadrupole (i = 1) Coefficient



b. Sextupole (i = 2) Coefficient

Figure H.4.1 Field harmonic coefficients vs Z for Y = 0 and 1000 MeV.

a. Quadrupole (i = 1) Coefficient

b. Sextupole (i = 2) Coefficient

Fig. H.4.2. Field Harmonic Coefficients vs Z for Y = 0 and 100 MeV

The plots for the other coefficients are contained in Appendix IX-B and C. The integrals of the coefficients were also found and Table H.4.11 lists the results obtained by both methods.

Table H.4.11

Field Harmonic Coefficients vs Method of Calculation $\begin{array}{c} \text{at } Y = 0 \end{array}$

_		
1	000	MeV
- 1	1 11 11 1	[V 63 V

i	Pri (See Tabl	imar le H	-	Secondary (See Appendix IX-A)	Magnitude Difference
0	1.7563	±	0.000005	1.7538	-0.0
. 1	0.0783	±	0.0005	0.0778	-0.0005
2	- 7.53	±	0.05	-7.55	+0.02
3	100.	±	8.	107.	+7.
4	-10701.	+ 5	555•	-10500.	-201.

100 MeV

i	Pri	ima	ry	Secondary	Magnitude
	(See Tab)	Le	н.4.3.)	(See Appendix IX-A)	Difference
0	1.7449	±	0.000002	1.7449	0.0
1	0.0036	±	0.0001	0.0036	0.0
2	-0.19	±	0.01	-0.19	0.0
3	8.4	±	0.3	8.4	0.0
4	-1068.	+	44.	-1059.	9.

H.5. Vertical Midplane

The program described in section G.6 was used to define the elevation of the magnetic midplane at all points in the scan geometry. The results for 1000 MeV are contained in Appendix X for a fit degree of 2 to the vertical distribution. The integration and fitting programs described in sections G.3, G.4, and G.5 were then used to obtain the parameters that were used to define the magnetic midplane. The method of fitting the data and then integrating the polynomial coefficients described in section G.5.b was used to find the average elevation, the ${\bf A}_0$ coefficient, and slope, ${\bf A}_1$, of the magnetic midplane in the X direction for each radial scan line. A tabular listing and plots of these coefficients for linear fits to the reference data are contained in Appendix X.

Integrals of the coefficients divided by the total length, L, over which they were integrated were used to give the average values for the entire magnet scan geometry. This process was equivalent to finding the

weighted averages of the coefficients but used the same programs as the field data. The plots for the 1000 MeV data, however, show that there are large errors in the coefficient values and some abrupt peaks for the radial scans at the far ends of the scan geometry. Because of this, an integrate—then—fit (see Section G.5.a) process was performed using the calculated offset values rather than the field values. The integrals were also performed over the central region of the axial scans and over the center plus the edges but excluding the tails. The central region was defined as in section H.4.d.3 to include radial scans 30 through 68. The edges include just the peak for the b₁ coefficient for the reference data shown in Fig. H.4.l.a. This region, then, covered scan numbers 9 through 89.

The total length of the integrals and the average magnetic midplane parameters are contained in Table H.5.1 for the 1000 MeV. Table H.5.2 contains the results for 100 MeV; for this case, the plots show no reasons to neglect the tails.

Table H.5.1

Average Magnetic Midplane Locations at 1000 MeV

Axial Scan Numbers	L (m)	Y (mm)	[in.]	X-Slope (mm/mm)*10 ⁻³	Description
1-97	1.954	+1.4	[0.055]	-2.0	Tota1
30-68	0.900	+1.8	[0.071]	-2.3	Central
30-49	0.450	+3.5	[0.135]	+4.5	Right-Central
49-68	0.450	+0.05	[0.002]	-9. 0	Left-Central
9-89	1.548	+0.9	[0.036]	-1.0	Center & Edges
9-49	0.774	+1.9	[0.074]	+1.6	Right - C+E
49-89	0.774	-0.03	[0.001]	-3.6	Left - C+E

Average Y over entire scan geometry = +0.97 mm [+0.038 in.].

Table H.5.2

Average Magnetic Midplane Locations at 100 MeV

Axial Scan Numbers	L (m)	Y (mm.)	[in.]	X-Slope (mm/mm)*10 ⁻³	Description
3-51	0.977	-0.084	[0.003]	+6.8	Total

Average Y over entire scan geometry = -0.09 mm [-0.0004 in.].

I. Magnetostatic Field Calculation

The program PE2D⁵ was used by R. Lari to calculate the magnetic fields in this magnet. A BH table for SAE 1010 steel was used and the center field was about 1.25 T. A sketch of the as-built magnet geometry is shown in Fig. A.1. and a plot of the flux lines is shown in Fig. I.1.

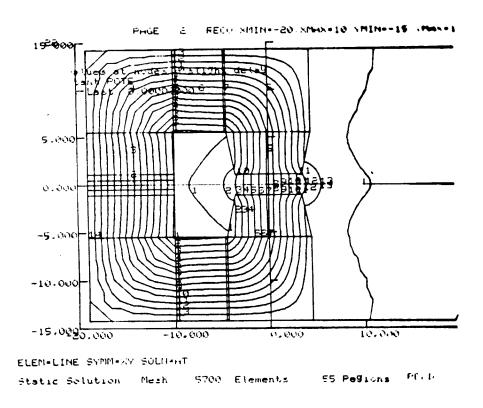


Fig. I.l Plot of flux lines determined by PE2D calculation.

The primary purpose of this calculation was to determine how the asymmetric placement of the coils in the vertical direction affects the location of the magnetic midplane. Little time was spent in optimizing this calculation, but it is felt that the results are relatively true to life. To get some idea of how realistic the results were, the vertical field components were compared to the measured values at several points. A plot of these values is shown in Fig. I.2 along with a curve connecting the measured values at Z=0. The fact that there were a couple of sets of adjacent points which had the same field values indicated affects of the finite element geometry.

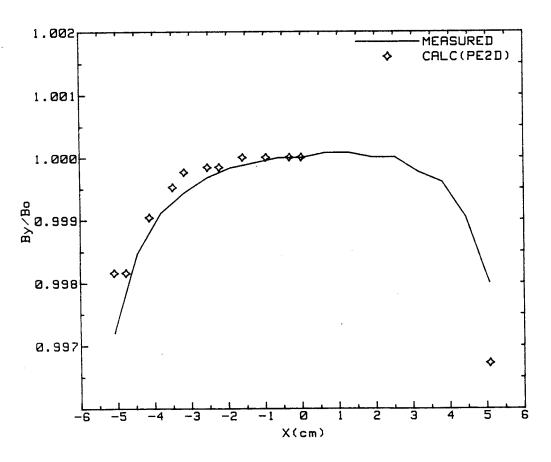


Fig. I.2 Comparison of measured and calculated vertical field component across the gap at $Z=0\ cm$.

The position of the magnetic midplane was estimated by plotting the radial component of the fields, Bx, and finding the location of the point at which the curve crossed through zero. A representative plot for such a curve at X = -4.1 cm is shown in Fig. I.3. It can be seen that this curve is not smooth, which was interpreted as indicating residual effects of the finite element geometry used in the calculation; no attempts were made, however, to remove these effects. The locations of the calculated zero-crossing points, the magnetic midplane, are listed in Table I.1. These values have an estimated error of about ± 0.5 mm. There is also listed, in Table I.1, the average location of the magnetic midplane as determined from the measured data at a central field of 1.5 T for the points between $Z = \pm 2.727$ and 37.966 cm. The points listed are close to the calculated points.

Table I.l

The Magnetic Midplane Relative to the Geometrical Midplane

	Calculated	Mea	sured
X	Y	X	Y
(cm)	(mm)	(cm)	(mm)
-5.08	1.3 ± 0.5*	-5.08	0.6 ± 0.5*
-4.76	1.3	-4.44	1.1
-4.13	1.3	-3.81	1.7
-3.49	2.5		
-2.86	3.7	-3.18	2.6
-2.50	3.8	-2.54	3.8
-2.22	5.1	-1.90	4.9
+5.08	-1.3	+5.08	1.0

*Estimated error

A second calculation was done with the coils located symmetrically in the vertical direction, and the locations of the magnetic midplane were all found to be at $Y = \hat{0}$.

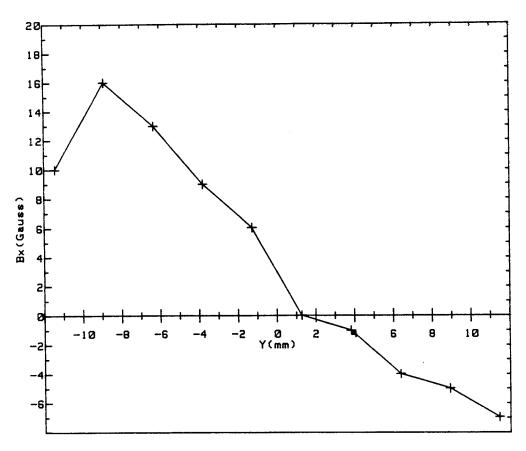


Fig. I.3 Plot of B_x vs Y at X = -4.1 cm as calculated by PE2D.

J. Discussions

There was no attempt in the following discussions to cover all of the areas that might be addressed with these measurements and analyses, but a few of the more obvious ones are covered. The absolute accuracy of the results described in this report is of interest. A number of tests were conducted and described here that verify the accuracy of these measurements. The estimated error in the measurement of the vertical field at a given point (Sections H.2 and H.3), for example, was derived in section F.2.f. to be about 0.03% at 1.55 T. Other data repeatabilities for measurements taken several days apart provided more evidence to support this conclusion. Looking at the field integrals and effective lengths (Sections H.2 and H.3), for example, shows that the results at 1000 MeV have nearly identical values for the three cases at Y = 0, and ±0.635 cm. This was expected and shows that the measuring system was repeatable over a several day time period.

The representative plots of the field integrals over the entire scan geometry shown in Figs. H.2 and H.3 show an obvious asymmetry. The peak value is also displaced from the geometrical center of the gap (X=0) by between 1 and 2 cm. These effects are primarily due to the field asymmetries at the ends of the magnet. To demonstrate this a plot of the integrals over the entire axial scan geometry and over only the central portion are shown in Fig. J.1 for 1000 MeV and Y=0; the values plotted are relative to the value at the X=0. This clearly shows that the integrals for the central part of the scan are much more symmetric and centered than those for the entire scan. Similar plots for 100 MeV are shown in Fig. J.2 using the same scales as those in Fig. J.1. This shows that at 100 MeV, the integrals are much more symmetric and centered than at 1000 MeV. The center integrals at 100 MeV actually have a slope of opposite sign.

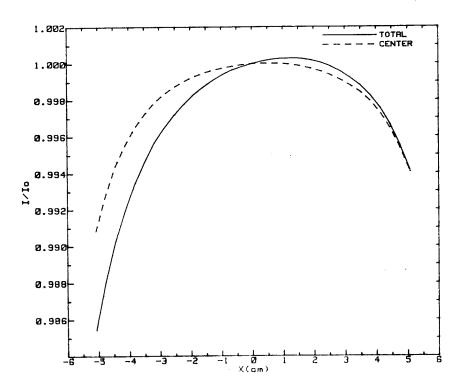


Fig. J.1 Integrals vs X for 1000 MeV and Y = 0 for total and center sections of axial scans. Values shown are relative to the value at X = 0.

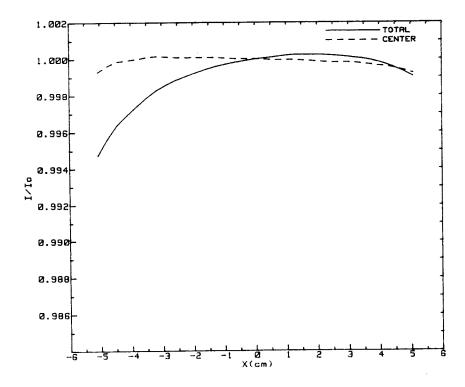


Figure J.2 Integrals vs X for 100 MeV and Y = 0 for total and center sections of axial scans. Values shown are relative to the value at X = 0.

The plot of the dipole field strength vs Z at 1000 MeV and Y = 0 in Appendix IX.B shows that the field has a significant hump throughout the central region of the gap. This indicated that the core is well saturated at 1000 MeV. The corresponding plot for 100 MeV is in Appendix IX.C and shows no such problem.

The plots of the harmonic coefficients for i>0 shown in Appendix IX.B and IX.C clearly indicate which ones are not significantly different from zero; see IX.B.6 for example. They also clearly show the relative sizes of the errors at every axial scan and the locations of isolated features; see IX.B.4, for an example of an isolated peak in an otherwise nondescript plot. It is also easy to subjectively compare the ends of the magnet by examining the shapes of the peaks which usually appear at each end and for each harmonic for i>0.

The representative relative harmonic strengths in Table H.4.4. show that the quadrupole and sextupole errors are proportionately larger for 1000 MeV by two to three times. The higher harmonics, however, are proportionately the same. Also Table H.4.6. shows that the center region of the 100 MeV data has quadrupole and sextupole harmonic coefficients that are opposite in sign to those of the end regions. This is desirable but would be even better if the magnitudes in the center were larger by around five times. The higher harmonics, on the other hand, have the same signs for all regions. The 1000 MeV results in Table H.4.5. show no sign reversals.

The vertical distribution of the harmonic coefficients is shown in the list in Table H.4.10 for the variations from the Y = 0 values. This shows that the dipole fields are constant to < 0.2% for all the planes and excitations and are < 0.1% for 15 out of 17 cases. All coefficients at 1000 MeV for i > 0 are < 5% at Y = ± 0.635 cm. Generally, the magnitudes of coefficients for i > 0 decrease towards the poles; i.e., the worst case is at the midplane. The trends for the 100 MeV data are not totally monotonic but they do seem to follow this same pattern.

The need to fully measure both sides of the magnet was addressed. There is no question that the second side does need to be measured at least once to verify that there are no localized problems in the core or coil, like a void in the core, a large slip in a block of laminations, or a misplaced conductor. Furthermore, to get the most accurate results, it is mandatory that both sides be measured. Looking at Table H.3.2, which contains the effective lengths for 800 MeV, it can be seen that the effective lengths

derived from the left side data are only 1.3 mm shorter at all values of X than the results for the two-sided data. This corresponds to 0.11% or less than the thickness of one lamination. This source of error could be minimized by appropriately normalizing the integrals for the single side data. The factor used could be found by finding the appropriate field integrals for the one set of two sided data. This process is even appropriate for the other required excitations; Table H.3.3 shows that for the 100 MeV results the difference is about 1.4 mm at 100 MeV. The values in Table H.4.8, however, show that the harmonic coefficients for i > 0 for the whole magnet can be estimated to within the calculated errors of the values at 1000 MeV and to within two times the calculated errors for 100 MeV. These differences correspond to field strengths at a radius of 5 cm that are < 0.03% of the value at X = 0. If the above corrections are made, the agreement would be even better.

The angles of the effective edge at the ends of the gap were also found. These edges should be parallel to the X-axis for an ideal magnet. The coordinates of the left edge are shown in Table A in Appendix VIII. The effective edges are not straight but were fit with a straight line so an angle could be easily defined. A plot of the effective edge is shown in Fig. J.3 for the left end at 1000 MeV; the location of the core end is at Z = 0.0. The 100 MeV data provides a very similar plot except that it is displaced in Z. The angle of the calculated straight lines for the left and right ends with respect to the X-axis were 1.761° and 1.752° respectively, and the RMS deviations of the edge points from the fit lines were both about 0.6 mm which corresponds to an angle of ± 0.03 ° For 100 MeV, the angles were both 1.1° ± 0.03 °

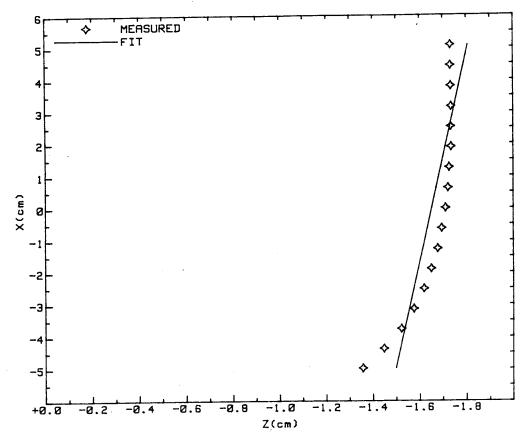


Figure J.3 The core left end and the effective edge at 1000 MeV.

The final area that will be discussed here is the magnetic midplane. process used to find its location at each point in the measured scan geometry was described in sections G.6. and H.5., and the reasons for expecting large errors in these values was described. The results listed in Table H.5.2 for the average locations of the midplane at 100 MeV indicate that it is not appreciably shifted from the geometrical midplane for this energy. MeV results, however, show that it is shifted to about Y = +1.4 mm on the average. The error in this value was estimated to be large, at least 0.5 The radial distributions of the calculated shifts at the individual scan points listed and plotted in Appendix X show some general trends in the values. First the distributions in the central part of the axial scan show that the shift is small at the inside radius edge of the gap and the values tend to increase towards X = 0 and then decrease towards the outside radius. Also, since there is considerable curvature in these values, fitting with straight lines did result in rather poor fits. This was chosen, however, because only linear errors are correctable by simple elevation adjustments in the magnet.

A plot of the calculated, magnetic midplane average locations vs X for the central portion of the 1000 MeV data is shown in Fig. J.4. This was felt to be the best case to use from those listed in Table H.5.1 to represent the magnetic midplane at 1000 MeV. The relatively smooth shape of the curve supports this choice as reasonably good. The straight line fit to this data is also shown here.

The plot of the average elevation vs Z in Appendix X.C also shows a definite step occuring at the center of the magnet. The size of the step was about 3 mm. This might be a real shift in the magnet geometry. The field calculations described in Section I seems to agree with the high side of the step not the low side. The fact that the step occurs right at the magnet center also indicates that it may be related to the movement of the measuring system between the ends of the magnet. Because of time limitations, no attempts were made to validate these results any further.

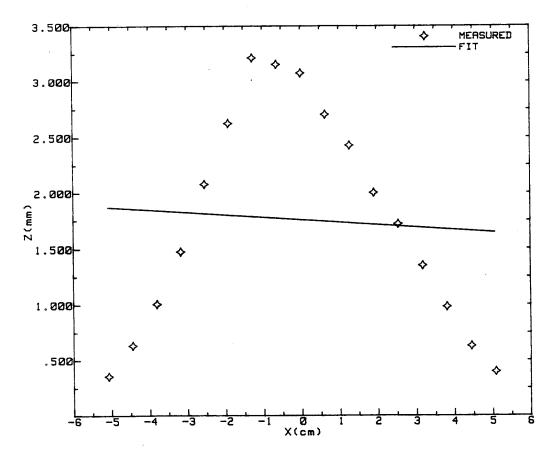


Figure J.4 The average location of the magnetic midplane found for the center portion of the scan from measured data vs X and the fit line used to define the average parameters for the entire magnet.

As a final note to this report, some suggestions will be made here that might help to improve the existing magnets at Aladdin and help to expedite future measurements if any are required. The most obvious source of problems seems to be the vertical asymmetries in the locations of the coils. This would be reduced by adding the appropriate spacers between the lower coil, the thinner one, and the bottom yoke. The stainless mounting bars that hold the coils to the cores also show evidence of being bent. It would not be difficult to install larger bars and prevent possible coil movements at the high excitation currents.

The measurements were taken on a one shift per day schedule over about a two week, ten working day, period. The measuring system operated flawlessly during this time and was energized for 96 to 120 hours at a time. The power supply also worked reliably, but there was one cooling water trip probably caused by a pressure bump. This experience showed that the measuring system could be operated, unattended, for long periods of time. It is proposed, therefore, that the system be modified to be able to automatically initiate scans at different elevations and even at different excitations. To change the elevation of the scanning plane would require that the Z-axis be motorized. The control hardware is already installed in the system interface and the motor hardware is on hand. This would, however, require modifications in the control program and some new motor mounting components. To change the magnet current would require both new hardware and program changes. With these changes, one magnet could easily be measured in one week.

Some more effort could be spent in optimizing the magnetic field calculations with particular attention spent in finding the magnetic midplane.

In summary, it is felt that the original goals for these measurements were met. The vertical magnetic fields were measured for excitations of 1000 MeV, 800 MeV, and 100 MeV. The harmonic coefficients corresponding to the integrated field values were found, and the errors in the coefficients were determined. And finally, the magnetic midplane was found and some of the associated parameters and trends were presented.

Acknowledgments

The following persons provided much appreciated assistance in obtaining the measurements, analyzing the data, and preparing this report:

P. Bertucci	D. McGhee	R. Swanstrom
F. Brumwell	W. Mehler	D. Voss
Y. Cho	W. Praeg	D. Wallace (U of Wisc.)
R. Kliss	E. Rizzo	E. Wallace
M. Knott	J. Sendera	R. Wehrle
R. Lari	G. Sprau	W. Winter (U of Wisc.)

References

- 1. K. Thompson, "Precision Magnet Measuring System," ANL-GEM-14-81, Oct. 1981.
- 2. K. M. Thompson, et al., "Field Properties of a Three Orbit Prototype Sector Magnet for the 4 GeV CW Electron Microtron," J. Physique 45 (1984) C1-229.
- 3. J. Orear, "Notes on Statistics for Physicists," <u>UCRL-8417</u>, August 13, 1965.
- 4. R. Cziffna and M. J. Moravscik, "A Practical Guide for the Method of Least Squares," UCRL-8522.
- 5. C. S. Biddlecombe, N. S. Diserens, C. P. Riley, J. Simkin, "PE2D User Guide," RL-81-089 (Version 6.3) Sept. 1983, Available from Vector Fields.

APPENDICES

The data contained in the tables and plots contained in the following sections are all based on the measurements of the vertical magnetic fields at Y = 0 for an excitation corresponding to 1000 MeV except where noted.

Y = 0	for an excitation corresponding to 1000 mev except where	ioceu•
I.	Raw field values for left side only	I-l
II.	The X-coordinates for left side only	II-1
III.	The Y-coordinates left side only	III-1
IV.	The Z-coordinates for all the points	IV-1
٧.	Auxiliary probe data for left side only	V-1
	A. NMR	V-2
	B. Temperature of Hall probe	V-2
VI.	3D plot of left side data only	VI-1
VII.	Normalized, matched, and merged field values	
	for all points	VII-1
viii.	Field integrals, effective lengths, harmonic	
	coefficients	VIII-l
	A. Left side only	VIII-1
	B. Both sides	VIII-1
IX.	Secondary method for defining harmonic coefficients	
	for all points	IX-1
	A. Table of coefficients for each radial scan	IX-1
	1. Integrated coefficients for 1000 MeV	IX-2
	2. Integrated coefficients for 100 MeV and Y = 0	IX-2
	B. Plots of coefficients vs Z at 1000 MeV	
	(i = 0,3,4,5,6,7)	IX-3
	C. Plots of coefficients vs Z at 100 MeV (i = 0,3,4)	IX-6
Χ.	Vertical midplane	X-1
	A. Calculated locations at all scan points	X-1
	B. Fit coefficients on each radial scan	X-5
	C. Plot of coefficients vs Z	X-6

13889.3 14657.0 15693.9 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0 15189.0

13985.0 14793.0 15703.0 15107.0 15203.3 15224.0 15253.7 15253.7 15253.7 15253.7 15256.0 15256.

148677.0 15887.0 15187.0 15287.0 15287.0 15287.0 15287.0 15289

14127.0 15161.0 152161.0 15254.3 15254.3 15256.3 15318.3 15328

14156.3 14829.3 15244.8 153279.0 15327.3 15332.3 15332.3 15334.3 15333.3 15333.3 15333.3 15328.0 15328.0 15289.0

144171.0 145949.3 152660.3 153620.0 153620.0 153620.0 15360.0 15361.0 15361.0 15361.0 15360.0 15310.0 15310.0 15310.0

@@@@@\\\\@@@@\\\\@

T(deg)= -12,750

T(deg)= -12,375

T(deg)= -12.888

T(deg)= -11.625

T(deg)= -11.250

[. Raw field values for left side only.

The following data is derived from the data file(RL.P15) described here: TITLE:ALADDIN Dipole-Polar Grid Left End (Z=0.00) Offset arc scan R=2.08m

Run number (15) was started at 9:48:58M on 7/3/85.

The scan area is defined for this run by the parameters for region in the geometry file named ALPLE.

The following is a list of the data in the ARC section of the scant

e for louing is a list of the data in the mode section of the term.

			-	Field(Gauss	^						
×	T(deg)=	T(deg)=	T(deg)=	T(deg)=	T(deg)=	T(deg)=	±(Bap)⊥	T(deg)=	×	T(deg)=	1 (deg)=
: 6	25.5			375	750	-1.500	-2.250	-3.000	(in)	-9.750	-10.500
2000	e e	14489.3	14493.7	14487.7	14473.7	14421.3	14340.0	14272.3	-3.000	14131.0	14168.0
200	9 6	15215.7	15215.7	15213.3	15207.7	15189.7	15161.0	15135.7	-2.500	14989.0	14976.0
20.00	9 6	15447.7	15448.3	15447.3	15445.3	15437.7	15425.3	15415.0	-2.000	15274.0	15246.3
-1.758	6	15499.0	15499.8	15497.3	15495.3	15489.0	15481.0	15472.0	-1.750	15335.0	15304.0
-1.588	0	15527.7	15528.0	15527.3	15527.0	15521.0	15514.8	15507.0	-1.500	15370.7	15339.3
-1.258	9.9	15547.3	_	15547.3	15546.0	15540.7	15535.0	15528.0	-1.250	15393.7	15361.7
1.966	6	15560.0	_	15558.7	15558.7	_	15548.0	15541.7	-1.888	15407.7	15376.3
756	S	15567.7		15567.7	15566.8	_	15557.3	15550.0	758	15417.7	15386.8
65	6	15573.0	-	15572.7	_		15563.0	15556.0	500	15423.7	15391.7
2000	9.6	15576.0	_	15575.0	15575.0	15570.7	15566.3	15559.8	258	15427.7	15396.7
2000	6	15578.0	_	15578.8			15567.3	15561.0	9.999	15438.3	15398.7
9 60	2	15577.0			15576.7	15572.7	15568.3	15560.3	. 258	15430.0	15399.6
200	2	15576.3				15571.0	15566.3	15559.0	. 588		15398.6
25.0	2	15572.3		15572.0	15571.7	15568.3	15562.3	15556.0	. 750	15426.3	15396.6
000	6	15567.0			_	15562.0	15557.7	15550.0	1.000		15390.6
1.259	9	15557.3			_	15553.8	15547.7	15540.0	1.258	15413.8	15382.7
1.588	9	15541.7	15542.8	-	15540.0	15538.0	15533.0	15526.0	1.500	15399.3	15368.6
1.758	6	15518.0		-	15517.0	15514.0	15509.3	15502.0	1.758	15378.0	15347.
2.000	8	15477.3		_	15475.7	15475.8	15472.0	15465.0	2.888	15343.0	15311.
2.598	9.0	15289.0		_	15289.0	15294.7	15299.7	15296.0	2.500	15184.7	15147.
3.888	9.9	14787.8	_	14705.7	14714.0	14742.3	14781.0	14795.8	3.000	14705.7	14644.
							•				

-	2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_							<u>.</u>	Field(Gauss	_
(ded)	T(dea)=	T(ded)=	T(deg)*	T(deg)=	T(deg)=	×	T(deg)=	T(deg)=	T(deg)*	T(deg)=	T(deg)
20.00		-6.759	-7.500	-8.25B	-9.888	Q C	-13.500	-13.875	-14.250	-14.625	-15.06
201											
4488.8	14403.3	14371.7	14305.7	14210.0	14126.0	-3.666	13424.3	12570.0	11052.3	9143.7	7348
5156.0	15150.8	15129.3	15098.7	15056.3	15013.3	-2.588	14327.7	13514.7	11970.3	9944.0	7982
5483.8	15394.0	15379.0	15358.3	15332.3	15303.0	-2.000	14671.3	13903.0	12392.3	10365.3	8361
5457.8	15446.7	15431.7	15413.3	15391.0	15364.7	-1.750	14755.7	14662.0	12502.3	18484.0	8486
5488.0	15478.0	15464.0	15447.0	15426.0	15460.0	-1.588	14807.7	14066.0	12577.0	10568.0	9266
5508.7	15498.3	15485.8	15467.7	15448.0	15423.0	-1.250	14844.3	14108.9	12627.8	19625.7	8626
5521.3	15511.7	15498.0	15481.0	15461.3	15438.0	-1.999	14869.0	14137.7	12662.0	10666.3	8669
5529.7	15519.3	15506.3	15490.0	15478.7	15447.3	758	_	14159.3	12686.0	-	8788
5535.7	15525.7	15512.0	15496.8	15477.8	15454.0	500	-	14173.7	12703.0	_	8723
5538.0	_	15516.0	15499.0	15480.3	15458.0	250	-	14184.0	12714.3	-	8737
5548.7	_	15517.3	15501.7	15483.0	15459.7	9.996	14912.3	14191.0	12722.7	_	8746
5540.0	_	15517.3	15500.3	15482.7	15461.8	. 258	-	14195.3	12727.7	-	8753
5539.0	_	15516.7	15499.7	15482.3	15459.3	. 500		14196.7	12728.0	_	8757
5535.8	_	15512.3	15497.3	15479.3	15457.0	. 758	14913.0	14193.3	12725.7	_	8754
5529.7	_	15587.7	15491.0	15473.3	15451.0	1.888	14907.7	14187.7	12720.0	_	8748
5520.0	_	15497.3	15483.0	15465.7	15443.3	1.258	14897.3	14177.0	12710.0	16723.7	8738
15585.7	_	15483.3	15468.0	15451.3	15428.7	1.500	14882.0	14160.0	12692.3	_	8723
5481.3	15473.0	15460.0	15445.7	15430.0	15408.0	1.758	14855.7	14134.0	12667.7	_	8699
15443.0	15432.7	15421.0	15408.0	15394.3	15372.3	2.699	14816.0	14093.0	12629.7	10649.0	8998
15263.7	15251.0	15243.0	15239.3	15235.0	15215.7	2.588	14642.0	13926.0	12476.0	18515.8	8557
14788.8	14689.7	14693.0	14715.0	14746.0	14746.0	3.888	14151.0	13475.7	12098.0	_	8334
	411448000000000000000000000000000000000		155 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1440.3 1437.7 11557.8 1	14403.3 1437.7 1430.7 11519.8 15129.9 15129.9 15129.9 15359.7 115449.7 115449.7 115519.9 15525.7 115529.9 15525.8 15525.7 15525.8 15525.9 1552	1470.3 14371.7 14305.7 14210.5 1550.0 15129.3 15299.3	14400 1 1437.7 1430.8 1520 142.0 14126.0 15150.0 15120.0 15120.1 15294.0 15372.0 15358.7 15356.3 15391.0 15364.7 15466.7 15466.7 15466.7 15466.7 15466.7 15466.7 15466.7 15466.7 15466.7 15469.0 15460.0 15460.0 15552.7 15598.0 15467.0 15460.0 15552.7 15598.0 15598.0 15460.0 15460.0 15552.7 15516.0 15498.0 15498.0 15552.7 15516.0 15498.0 15498.0 15552.7 15516.0 15499.0 15499.0 15460.0 15552.7 15516.0 15499.0 15499.0 15460.0 15552.0 15516.0 15552.0 15516.0 15499.0 15499.0 15449.3 15516.0 15516.0 15497.3 15459.7 15482.0 15516.0 15516.0 15497.3 15459.0 15516.0 15497.3 15459.7 15482.7 15482.7 15483.0 15519.0 15497.3 15459.0 15469.0 15445.7 15482	14400.3 14371.7 14308.7 14210.0 14126.0 15126.0 15129.0 15129.3 15029.3 15029.3 15020.3 1502	14403.3 14371.7 14308.7 14210.0 14126.0 -3.000 13424.3 15129.0 15464.0 15466.0 15460.0 -1.550 14845.3 15580.0 15480.0 15480.0 -1.550 14845.3 15580.0 15490.0 15440.0 15440.0 15440.0 15440.0 15440.0 15440.0 15460.0	14403.3 14371.7 14308.7 14210.6 14126.0 -3.000 13424.7 12570.0 15594.0 15594.0 15594.0 15595.3 15555.3 15555.3 15555.3 15555.3 15555.3 15555.3 15555.3 15555.3 15555	14403.3 14371.7 14308.7 142.50 -2.50 -2.500 13424.3 12570.0 11052.3 15594.0 15129.3 15505.3 15013.3 -2.500 13427.7 13514.7 11052.3 15595.3 15392.3 15303.0 -2.500 13427.7 13514.7 11970.3 15594.0 15345.7 15431.7 15431.7 15431.7 15431.7 15431.7 15431.7 15431.7 15431.7 15431.7 15440.0 15450.0 15364.7 -1.500 14877.7 14002.0 12592.3 15460.0 15460.0 -1.500 14847.3 14002.0 12577.0 15460.0 15467.0 15467.0 15460.0 15467.0 15460.0 15467.0 15460.0 15467.0 15460.0 15467.0 15460.0 15467.0 15460.0 15467.0 15460.0 14175.7 14006.0 12577.0 15560.0 15460.0 15467.0 15460.0 15467.0 15460.0 15

Page 4

L(in)= -17.888

Field(Gauss) L(in)= L(in)= L(in)= -14.000 -15.000 -16.000

L(in)= -13.888

The following is a list of the data in the TRNGENT line sections of the scan!

-	, ,	1				_	_		_					_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
1 (40)=	110 000	16:000		-60.0	-61.0	163.0		9.59	-64.0	-64.0	_													_		_			_	_
,	()	à		-3.000	-2.588	000		-1.750	-1.588	-1.258	9 6	999.1	90.	. 588	258	000	000.0	. 258	. 588	758			1.258	1.500	1 750		7.800	2.586	9.000	
	L(1n)=	-4.000								000																				_
	L(in)#	-3.500																												_
	L(in)=	-3.696		•		•	_			2000																		_		_
^	L(in)=	-2.588		•	•	•	•	•		3165.3																				_
Field(Gauss	L(in)=	-2.000		•	,	.,	•	•	•	3851.0	•																			_
Ī	L(in)=	500	2		•	•			•	4688.0																				_
	L(in)=	000	200.1		•	•	•	•		•		-																	_	5657.8
	=(ui)	200			5984.3	6467.8		21.0	6991.0	6983.0	7844.8	7001	0.100	N.CZ17	7148.3	7165.8	1 2 2 2 2													6849.0
_	>	< (Ç C		-3.666	000		-E. 888	-1.758	-1.500	200	200		750	588	0.00	000	9.00	. 258	598	750	0 0	1.888	1.250	1.588	2000		2.888	2.500	3.666

!	H	90		9.	0	•	•	٠.	9.	-69.3	9.0	ღ.	. 8	0	C		9.	2.0	3.0	3.0	3.7	6.6	9.6	e. 4	2		2.0
	L(in)=	-11.000		99-	-67	9	0	89-	-69															_			_
	L(in)*	-18.666		9.69-	-69.2		9.9	-70.3	-70.0	-71.0	-70.3	-70.7	-71.0	-71.8		?	-71.0	-72.0	-72.8	-72.0	-72.0	-73.0	-72.7	-73.7	-74 0		9:07-
	L(in)=	-9.666		-64.0	-62.B		9.19	-60.0	-60.0	-59.8	-59.0	-58.0	-58.8	157.0		9.70-	-56.8	-56.8	-56.0	-56.9	-56.8			1	47.4	2	-58.6
^	L(in)=	-8.000		-38.0	- 22	2	-26.0	-23.0	-20.0	-18.0	-15.0	-13.0	11.0	. 0		20	-7.0	-6.9	-5.8		4-				; ,		9-
Field(Gauss)	-(in)	-7.000		44.0	0	2	86.3	89.0	97.0	103.7	110.0	115.0	_			-	_	_	137.8			9 6		_		_	137.0
Ē	(in)=	-6.000		971.0		318.6	359.7	377.7	394.0	4.08.0	421.8	432.0	441.3	7 0		456.0	461.8	465.3	469.0	47.1	47.5	13.0					463.3
	- (in)	999	2000	2 2 2 2	2 1	813.	888.0	907.8	931	6.00	0.00	200	000	996.0	1887.8	1016.0	1822.8	1927.3	0 0	0.00		9.4.0	0.400	9.5591	1831.3	1925.9	1014.0
	1 4 4 4 4 7 1	1 1 1 1	14.000	9	0.42.0	1141.0	1215.0	1246.3	27.5	2000	20.0			347.6	1358.6	1367.7	1374.7	•	•	200	0000	2000	1380.0	1,000.	1381.0	1371.0	1357.3
_	,	~ (è	0	-3.666	-2.500	-2 AAA	7.00	000	0000	000	1.000	1.00		- 256	9 999	0 0	003	000	900		1.256	1.588	1. 738	2.000	2.598	2000

Page 2

II. The X-coordinates for left side only.

The following data is derived from the data file(RL.P15) described here: TITLE:ALADDIN Dipole-Polar Grid Left End (Z=0.00) Offset arc scan R=2.08m

Run number (15) was started at 9:48:58M on 7/3/85.

The scan area is defined for this run by the parameters for region #1 in the geometry file named ALPLE.

The following is a list of the data in the ARC section of the scan:

X(10)		ľ	_	'	_	•	1	1	1	•				'	<u> </u>	'	١			•	1	•	'								
T(deg) = T			# (6ab)	-12.375		-4.9057	A 40K7	1000	-3.9057	-3.6557	-3.4057	-2 1557	2000	16.7037	75.6337	-2.4057	-2.1557	. 1000	200	1.600	-1.4857	-1,1557	9857	- CRR7		4057	1557	0.00			1.0943
T(deg) = T			= (6ab) =	-12.000		-4.7924	14.000	1 6 7 6 4	-3.7924	-3.5424	-3.2924	13 0424	7007	-2.1.2	-4.3424	-2.2924	-2. A424	7024	70.0	1.3464	-1.2924	-1.0424	- 7924	424		2924	0424	2076	7000	5	1.2976
T(deg)= T(de	î		# (Bab) =	-11.625		-4.6825	ACO1 4-	200	-3.6825	-3,4325	-3.1825	10.0304	2000	7.00.2	27.4373	-2.1825	-1.9325	2007	9 (0754.1	-1.1825	-, 9325	6825	4325	9 1	- 1825	. 9675	3175	2 4		1.3175
T(deg)= T(deg)= <t< td=""><th>×</th><td></td><td>2000</td><td>-11.238</td><td></td><td>-4.5768</td><td>-4 0769</td><td></td><td>13.3760</td><td>-3,3260</td><td>-3.0760</td><td>-2.826A</td><td>22 8760</td><td>00.00</td><td>-4.3660</td><td>-2.0760</td><td>-1.8268</td><td>2250</td><td></td><td>0070</td><td>-1.0760</td><td>8268</td><td>5768</td><td>3269</td><td>2 1</td><td> 0/60</td><td>1740</td><td>4240</td><td>0.40</td><td></td><td>1.4240</td></t<>	×		2000	-11.238		-4.5768	-4 0769		13.3760	-3,3260	-3.0760	-2.826A	22 8760	00.00	-4.3660	-2.0760	-1.8268	2250		0070	-1.0760	8268	5768	3269	2 1	0/60	1740	4240	0.40		1.4240
T(deg)= T(deg)			000	-10.300		-4.3734	-2 8734		45.36.54	-3.1234	-2.8734	-2.6234	-2 3234	7000	-6.1634	-1.8734	-1.6234	2734		111634	8734	-,6234	3734	1234		1766	.3766	.6266	1266	2	1.6266
T(deg)= T(deg)= T(deg)= T(deg)= T(deg)= T(deg)= T(deg)= T(deg)= -3.000 1,750		-/-/-/-	- 1000	ac) . 6-		-4.1847	-3 6847		13.184	-2.9347	-2.6847	-2.4347	-2 1847		11.754	-1.6847	-1.4347	-1.1847	0.00	100	6847	4347	1847	9653	9 6	5015.	. 5653	.8153	2153		1.8153
T(deg)= T(deg)		3	c .	à		-3.000	-2 500		-4.000	-1.758	-1.598	-1.256	20.00		9000	- 500	- 259	999	000	9 0	990.	. 750	1.999	1.258		1.000	1.758	2.000	0.00		3.666
T(deg)= T(deg)		T(deg)=	-3. BBB		76116	2117	-2.6124	-2.1124	4000	1000	-1.6124	-1.3624	-1.1124	8624	4019	1910	3624	1124	.1376	3876	200	920	9288.	1.1376	1.3876	0.00	1.03.0	1.8876	2.3876	2000 0	
T(deq)= T(deq)		T(deg)=	-2.258		-2 0622	2	-2.5632	-2.8632	1 0133	70101	-1.5632	-1.3132	-1.0632	8132	6698	9 6	3132	0632	. 1868	4368	0 9 0 9	0000	8986.	1.1868	1.4368	0000	1.0000	1.9368	2.4368	2 9369	-
T(deg)= T(deg)		T(deg)=	-1.500		1000		-2.5281	-2.0281	1 2201		-1.5281	-1.2781	-1.0281	7781	400		-, 2781	0281	. 2219	4719	0100	6173	61.6.	1.2219	1.4719	425	1.(219	1.9719	2.4719	0 0210	
T(deg)= T(deg)		T(deg)=	758		-2 0070		-2.5070	-2.8878	26.30	2 1	-1.5070	-1.2578	-1.0070	7578	E070	9 6	- 2578	0070	. 2430	4938	24.20	900	9866.	1.2430	1.4938	24.20	97	1.9930	2.4930	0 0000	
T(deg)= T(deg)	'n)	T(deg)=	-, 375		0100		-2.5018	-2.0018	2810	0 1	-1.5018	-1.2518	-1.0018	7518	9		. 2318	0018	•		•	704.	7866	1.2482	1.4982	1400	7040.	1.9982	2.4982	2 9982	
T (deg) = 1.00	×	T(deg)=	999		0000		-2.5000	-2.8888	7500	000	-1.5000	-1.2500	-1.0000	7500	2000		- 2366	8.8888	. 2590	2000	0000	990	1.8888	1.2588	1.5000	2600	0000	2.0000	2.5000	2000	200
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T(deg)=	27.E		0100		-2.5018	-2.0018	7810	0 1	-1.5018	-1.2518	-1.8018	7518	0.00	9 6	8167	8018	. 2482	4982	2402	704	2866.	1.2482	1.4982	2702	704.	1.9982	2.4982	0 9990	
X C C C C C C C C C C C C C C C C C C C		T(deg)=	758		-2 0070		-2.5070	-2.8878	7570	2 1	-1.5878	-1.2570	-1.0079	-,7578	5070		9/67	0070	. 2430	4930			9566.	1.2430	1.4930	27.30	0000	1.9930	2.4938	0.000	2000
		×	(01)		- 2 000	3	-2.500	-2.868	7.0	0 1	-1.588	-1.258	-1.666	750	000		1.738	9.999	. 250	888	2 10	900	1.888	1.258	1.500	4.	9000	2.868	2.588	200	200

	T(dea)=	-15.888	7940		2 K 7 . C -	-4.7948	-4.5448	-4 2948	0770		10.048	-3.5448	-3.2948	3 9440	0.00	24.7.7	-2.3448	-2.2948	-2 844B	2070	046	-1.5448	-1.2948		D	7948	2948	. 2052
Cain	T(dea)=	-14.625	3683.81	1 -	0 0 0	-4.6576	-4.4076	-4.1576	2000	0 0 0	0 00	-3.4076	-3.1576	-2 9076	2000	0.00.7	-4.40/6	-2.1576	-1.9876	2682	0	-1.4076	-1.1576	2000	0 0 0 0	6576	1576	.3424
×	T(deg)=	-14.258	-4 4027		2000	-4.5237	-4.2737	-4. 0237	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3.063	-3.2737	-3.0237	-2 7737	10 18 20 20	200	-4.6737	-2.0237	-1.7737	- F C C P -	9 1	-1.2737	-1.0237	- 7737	200	. 5237	0237	.4763
	T(deg)=	-13.875	-5.3933	200	5500	-4.3933	-4.1433	-3.8933	-3 6433	200	00000	-3.1433	-2,8933	-2.6433	2933		5541.7	-1.8933	-1.6433	2022		-1.1433	8933	6433	9 0	5565.	. 1067	.6067
	T(deg)	-13.588	-5.2662	1 2000	700.4	-4.2662	-4.0162	-3.7662	-3 5162	2000	3.6006	-3.0162	-2.7662	-2.5162	-2 2662		7010.7	-1.7662	-1.5162	-1.2662		-1.0162	7662	- 5162		7997	.2338	.7338
	×	(ui)	-3.888	-2 600	000.7	-7.000	-1.750	-1.500	20.00	900		PC / -	500	258	900		003.	996	. 750	200		1.636	1.500	1 750		7 . 000	2.588	3.666
	T(deg)=	-9.000	-4.0098	-3.5098	8600	0 0	-2.738	-2.5098	-2.2598	-2.0098	2557		-1.0098	-1.2598	-1.0098	7598	0000	0000	2598	6698	. 2402	1 7	7964.	. 7402	. 9902	4000	30/1.	1.9962
	T(deg)=	-8.258	-3.8488	-3.3488	-2 848B		9966.7-	-2.3488	-2.0988	-1.8488	-1.5988		2045.1-	-1.0988	8488	5988	3488		6388	. 1512	4012	C 1 11 7	3100.	. 9012	1.1512	1 6510		7.1912
	T(deg)=	-7.500	-3.7017	-3.2017	-2.7017		7104.7-	-2.2017	-1.9517	-1.7017	-1.4517		-1.2017	9517	7017	4517	- 2017		. 6483	.2983	. 5483	2002	200	1.0483	1.2983	1 7983		4.2983
	=(6*P)1	-6.750	-3.5685	-3.0685	-2 5685		-4.3183	-2.9685	-1.8185	-1.5685	-1.3185		CR90.1-	8185	5685	3185	- 9685		C181.	. 4315	. 6815	B 100	7	1.1815	1.4315	1 9318		6.4315
X(in)	≖(Bap)1	-6.888	-3.4493	-2.9493	-2.4493		-2.1993	-1.9493	-1.6993	-1.4493	-1.1993		5646	6993	4493	1993	9597		.300.	•	.8007	-	1000	1.3007	1.5507	2 8587		7900.7
×	I(deg)=	-5.250	-3.3441	-2.8441	-2.3441		٠	7	-1.5941	-1.3441	-		i	i	ľ	0941		•	•	•	. 9059	-	:	1.4059	1.6559	٥	; (K. 6009
	T(deg)=	-4.500	-3.2528	-2.7528	-2.2528	000	8700.7-	-1.7528	-1.5028																			7.4.7
	T(deg)=	-3.750	-3,1756	-2.6756	-2.1756	0 0 0	11.3420	-1.6756	-1.4256	-1.1756	9256	2365	00.0	4256	1756	. 0744	3244	2777	**	. 8244	1.0744	1 3244		1.5744	1.8244	2,3244	100	7.8544
	×	(10)	-3.868	-2.500	-2.888		ac / 1 -	-1.500	-1.250	-1.989	-, 750	00.8	99.	250	6.999	. 256	500	2 80	ac.	1.000	1.258	1 500		1.756	2.000	2.588	000	9.00

1.0.1947 -9.6947 -9.6947 -9.69447 -8.19447 -7.49447 -7.49447 -7.49447 -6.9447 -6.9447 -6.9447 -6.9447 -6.9447 -7.494

-9.6771 -9.1771 -9.6771 -9.4271 -7.9271 -7.9271 -7.4271 -7.4271 -7.4271 -6.6771 -6.427

X(in) L(in)= L(in)= -14,000 -15,000

L(in)= -13.080

The following is a list of the data in the TRNGENT line sections of the scan:

I		_	L	1		_	<u>'</u>				<u>'</u>	9	<u>.</u>	. 9			_		•	9	9	9	9		_	9	9	_	0
	L(in)=	-12.000		-8.9006	7007	100 + 100	-2.9006	-7.6506	7 4006	100+	-7.1586	-6.9986	-6.6590	-6.4006	-6.1586	- 40006			-5.4886	-5.1586	-4.9886	-4.6586	-4.4886		-4.1386	-3.9006	-3.4006	2000	26.300
	×	(in)		~3.080		26.300	-2.000	-1.758		1.366	-1.250	-1.000	758	588	0.50	9		BC .	500	. 758	1.888	1.250	500		7.78	2.888	2.500	000	3.000
	L(in)=	-4.000		-6.8301	-6.3381		-5.8301	-5.5801	-5,3381		-3.0801	-4.8301	-4.5801	-4,3301	-4.0801	-3,8301	-3.5881	10000	100000	-3.0801	-2.8301	-2.5801	-2.3301	-2 BRB1		1.6361	-1.3301	8301	
	L(in)=	-3.598		-6.7007	-6 2007	9 1	-5.7907	-5.4507	-S 2887	000	-4.9587	-4.7007	-4.4507	-4.2007	-3.9507	-3.7887	-3.4507	000	-3.2007	-2.9507	-2.7007	-2.4587	-2.2007	7050		-1.7007	-1.2907	- 7007	_
	L(in)=	-3,666		-6,5713	6 0712	20.01	-5.5713	-5,3213	E 0712	2 .	-4.8213	-4.5713	-4.3213	-4.0713	-3.8213	-3.5713	-3 3213		-3.6713	-2.8213	-2.5713	-2.3213	-2.0713	_	_	_	-1.0713	E 1713	
	L(in)=	-2.500		-6.4418		-0.7410	-5.4418	-5.1918	0 7 7 0	0146.4-	-4.6918	-4.4418	-4.1918	-3.9418	-3.6918	-3.4418	0,0	01610	-2.9418	-2.6918	-2.4418	-2.1918	-1.9418		-1.6710	-1.4418	9418	7410	0.144.0
1	L(in)=	-2.888		-6.3124		-2.8.0-	-5.3124	4C 0K24		-4.8124	-4.5624	-4.3124	-4.0624	-3.8124	-2 5624	-2 2124		-3.00.5-	-2.8124	-2.5624	-2,3124		_		-1.3624	-1.3124	8124		-, 3124
ć	1 (in)#	-1.500		B281 3-		-5.6838	-5.1838	0000	3000	-4.6838	-4.4338	-4.1830	-3 9339	-3.6838	2000	200	2000	-2.9338	-2.6830	-2.4330	-2.1838	-1.9338	6830		-1.4338	-1.1830	6836		- 1836
	=(ui)	- 1 999		2080	0000	-5.5536	45.00	9000	000	-4.5536	-4.3836	4.0536	25.00	2000	9000	00000	0000	-2.8036	-2,5536	-2.3036	-2.0536	11 8836	9098	2000	-1.3036	-1.8536	96.88		- 8536
	#(44)	200	900		2476.0-	-5.4242	4 9242	100	24.0.4	-4.4242	-4 1742	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,773	3.0.0	13.4646	19.10.0	7676.7-	-2.6742	-2.4242	_					-1.1742	- 9242	2222	3131	B228
	,	· (è	000	-3.000	2000		2000	-1.73W	-1.500	0.00	900	000			967.	9.696	. 258	200	7.00			000	1.588	758	0.00	000	2000	999

1	-(ui)	× (a)	X(in)	L(in)=	L(in)=	L(in)=	L(in)=
-4.508	-5.000	-6.888	-7.888	-8.000	-9.888	-10.000	-11.000
							0
-6.9595	-7.0889	-7.3477	-7.6065	-7.8654	-8.1242	-8.3838	-8.6418
44.08	988	-6.8477	-7.1865	-7,3654	-7.6242	-2.8830	-8.1418
) H	000	-6 3477	-6.6965	-6.8654	-7.1242	-7.3830	-7.6418
7000	000	6 0000	2000 3-	-6.6154	-6.8742	-7.1330	-7.3918
.U. (693	0000	14.0477	1000	46.3654	-6.6242	-6.8839	-7.1418
0 0 0 0 0 0 M			10.00	-6.1154	-6.3742	-6.6330	-6.8918
0.000	0000	- 5 3477	-18.6963	-5.8654	-6.1242	-6.3838	-6.6418
00000		15.00.77		-5.6154	-5.8742	-6.1338	-6.3918
	_	0.077		-5.3654	-5.6242	-5.8838	-6.1418
0,000	0000		14.00	1.00	-5.3742	-5.6338	-5.8918
10000		7,44	-4.6863	-4.8654	-5.1242	-5.3830	-5.6418
0.00		-4 8977		-4.6154	-4.8742	-5.1338	-5.3918
2000		-3 8477	_	-4.3654	-4.6242	-4.8839	-5.1418
1000		-3.5977		-4.1154	-4.3742	-4.6338	-4.8918
0.00		-3.3477		-3.8654	-4.1242	-4.3838	-4.6418
6000	_	-3.0977		-3.6154	-3.8742	-4.1330	-4.3918
1000		-2.8477			-3.6242	-3,8830	-4.1418
10000		-2.5977		_	-3.3742	-3.6330	-3.8918
10000		-2 3477			-3.1242	-3.3830	-3.6418
2000 T	_	-1.8477			-2.6242	-2.8830	-3.1418
9 6 6 6 6 6	_	_		-1.8654	-2.1242	-2,3830	-2.6418
	_	_					

Iff. The Y-coordinates for left side only.

TITLE: ALADDIN Dipole-Polar Grid Left End (2=8.88) Offset arc scan R=2.88m The following data is derived from the data file(AL.P15) described here:

Run number (15) was started at 9:48:5AM on 7/3/85.

The scan area is defined for this run by the parameters for region #1 in the geometry file named ALPLE.

The following is a list of the data in the ARC section of the scan:

T(deg)= -13.125 Page 2

1 **	اما			5	ø	69	63	0	0	0	9	62	9	69	0	0	69	9	60	9	9	9	9	
1/400	-13.125		-18.6256	70.01	-18.6258	-18,6250	-18.6258	-18.6250	-18.6250	-18.6258	-18.6250	-18.6250	-18.6250	-18.6258	-18.6250	-18.6250	-18.6250	-18.6250	-18.6250	-18.6250	-18,6250	-18,6258	-18.6250	
1000	-12.750			ο 6	018	818		_	-18.1018	-18.1018	-18.1018	-18.1018	-18.1018	-18.1018	-18.1018	-18.1018	-18.1018	8.101.8	-18.1018	-18.1018	-18.1018		8.101.8	
L			279 - 18	81-16/	779 -18.1				779 - 18		279 -16	779 -16	31- 622	31- 622				779 -18.			12- 622	12- 622	1- 622	
L	-12.375		-17.5	C: 1-	1 -17.5779	1-17.5779	-17.	-17.	1-17.5	-17.5	1-17.5	1-17.5	1 -17.5779	1 -17.5	1 -17.5	1 -17.5779	1 -17.5779	1 -17.5779	1 -17.5779	1 -17.	1 -17.	1 -17.	1 -17.	
	1(deg)= -12.000		-17.0531 -17.5779	-17.0531 -17.5779	-17,8531	17,053	-17.8531	-17,0531	17.053	17.053	17.853	-17,053	-17.053	-17.053	-17,853	-17.053	-17,053	-17,853	-17.053	-17.053	-17.053	-17,053	-17.053	
	T(deg)= -11.625		. 5277	. 5277	-16.5277	-16.5277 -17.0531	-16 5277	-16.5277	-16 agis -16 5272 -17.0531 -17.5779	14 9471 -16 0015 -16 5277 -17 0531 -17 5779	-14 9471 -16 0015 -16 5277 -17 0531 -17 5779	-14 9471 -16 8815 -16.5277 -17,8531 -17.5779	5.5277	-16 9015 -16.5277 -17.0531 -17.5779	-16.8815 -16.5277 -17.8531 -17.5779	5.5277	-16.0015 -16.5277 -17.0531	-16.0015 -16.5277 -17.0531	-16 8015 -16 5277 -17 0531	-16 9015 -16 5277 -17, 8531 -17, 5779	-16.0015 -16.5277 -17.0531 -17.5779	-16.8815 -16.5277 -17,8531 -17,5779 -18.1818	6.5277	-
5			-16.0015 -16.5277	-16.8815 -16.5277	815 -16	- 15		- 1	21.0		516	1915 -16	1915	1010	9915	9015	9815 -10	9015 -1	100	2012	- 12	3815 -1	3015 -1	-
		_	1 -16.0			16.9913	200.01	2100.01-				91-	1.	1		-16.6	-16.	-16.			- 1 6	-16.	-16	: -
	T(deg)= -16.569		-14.947	-14.9471	-14 9471	14 9471	11.047	114.047	114.9461	14.047	14.047	14.947	746 411	740 41-	-14.9471	-14.9471	-14 947	-14.947	-14 9471	-14 9471	14 947	-14.9471	-14.94	
	(deg)= -9.750		-3.000 -13.8902 -14.9471	-13.8992				13.000					12 0000 -14 9471 -16 0015 -16,5277 -17,0531	20000 61-	2000	2000	000	13 8900 -14 9471	2000	2000	13 8980 - 14 9471	0000	-13 8902 -14 9471 -16 0015 -16 5277 -17 0531 -17 5779 -18 1018	200
	-		888 -1	-2.500 -1.		_					000	_		_		_			_			-		
	×G		έ	î	ָ וֹ	1	7	ī ·	;	-		1	16	ס			-	• -	• •	-	• •	40	. "	,
	T(deg)=	333	-4.2926		-4.2320	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926	-4.2926
	T(deg)=	2003	-3 2201		-3.2201	-3.2201	-3.2201	-3.2201	-3.2201	-3.2201	-3.2261	-3.2201	-3.2201	-3,2201	-3.2201	-3.2201	-3.2201	-3.2201	-3.2201	-3.2201	-3.2201	-3.2201	-3.2201	-3.2201
	T(deg)=	2000	-2 1471		-2.1471	_	-2.1471			-2.1471			-2.1471	-2.1471	-2.1471		-2.1471	-2.1471		-	-2.1471	-	-	-2.1471
	T(deg)=		3070 -	00.0	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736	-1.0736
, i		6)6.	950	0000	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368	5368
3	T(deg)=	9.000	0	9.000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	9.8666	9.0009	0.000	8.8888	8.6668	0.0000	0.6666	8.0000	0.0000	0.0000	0.8666	0.0000	0.000
	T(deg)=	373	1	2020	. 5368	. 5368	5368	5368	. 5368	. 5368	. 5368	.5368	.5368	.5368	. 5368	. 5368	. 5368	.5368	. 5368	.5368	.5368	.5368	. 5368	. 5368
ı	T(deg)=	. 750		1.8736	1.6736	1.0736	1.9736	1.0736	1.8736	1.0736	1.0736	1.8736	1,0736	1.8736		1.0736	-	1.0736	1.0736	1.0736	1.8736	1.0736	1.0736	1.0736
-	×	(ul)		-3.606	-2.588	- 2. BRB	758	25.0	-1.256	-1.888	758	566	250	ତ ଓଡ଼	. 258	. 500	750	1.866	1.250	1.568	1.750	2.000	2.500	3.686

T(deg)=	-15.000	-21.2286	-21.2286	-21.2286	-21.2286	-21.2286	-21.2286	-21.2286	-19, 6698 -28, 1897 -28, 7896 -21, 2286	-21.2286	-21.2286	-19,6698 -28,1897 -28,7896 -21,2286	-19.6690 -20.1897 -20.7096 -21.2286	-19.1474 -19.6690 -20.1897 -20.7096 -21.2286	250 -19,1474 -19,6698 -28,1897 -28,7896 -21,2286	SAR -19 1474 -19.6698 -28.1897 -28.7896 -21.2286	250 -19.1474 -19.6698 -20.1897 -20.7896 -21.2286	2 and -19 1474 -19 6690 -20 1897 -20 7096 -21.2286	2 400 -19 1474 -19 6690 -20 1897 -20 7896 -21 2286	3 998 -19 1474 -19 6698 -28 1897 -28 7896 -21 2286	
Y(in) = T(deg)=	L_	-28.7896	-20.7096	-20.7096	-28.7896	-20.7096	-20.7096	-20.7096	-20.7096	-20.7096	-20.7096	-20.7096	-20.7096	-20.7096	-20.7096	-20.7096	-20,7096	-20.7096	-20.7096	-20,7096	-
Y(-14.250	-20.1897	-20.1897	-20.1897	-20.1897	-20.1897	-20.1897	-20.1897	-20.1897	-28,1897	-20.1897	-20,1897	-20.1897	-20.1897	-20.1897	-20.1897	-20.1897	-20.1897	-20.1897	-20,1897	
T(dea)=		-19,1474 -19,6690 -20,1897 -20,7096 -21,2286	-19.6690	-19.6690	-19.6690	-19.6690	-19.6698	-19.6690	-19.6698	-19.6699	-19.6690	-19,6698	-19,6690	-19.6690	-19.6690	-19.6690	-19.6698	19.669	-19.6698	-19.6698	******
T (deg)	-13.500			-1.750 -19.1474 -19.6690 -20.1897 -20.7096 -21.2286	-1.500 -19.1474 -19.6690 -20.1897 -20.7896	-1.500 -19.1474 -19.6690 -20.1897 -20.7096	-, 750 -19, 1474 -19, 6690 -20, 1897 -20, 7896 -21, 2286	500 -19.1474 -19.6690 -20.1897 -20.7096	258 -19.1474	9.888 -19.1474 -19.6698 -28.1897 -28.7896 -21.2286	250 -19.1474 -19.6690 -28.1897 -20.7096 -21.2286	500 -19.1474	758 -19.1474		-19.1474	-19.1474	-19 1474	1 2 1 4 7 4	474	1474	
×	Cus	-3.666	-2.888	-1.750	-1.500	1.698	-, 750	599	-, 250	9.000	250	999	758	1.000	1.250	900	2000	900	90.0	9 6	
	T(deg)≠ -9.000	-12.8309	-12.8309	-12.8369	-12.8309	-12.8309	-12.8389	-12.8309	-12,8369	-12,8309	-12.8309	-12.8309	-12.8309	-9.6405 -10.7059 -11.7694 -12.8309	-9.6405 -10.7059 -11.7694 -12.8369	-9.6485 -18.7859 -11.7694 -12.8389	-9.6405 -10.7059 -11.7694 -12.8309	-9.6405 -10.7059 -11.7694 -12.8309	-9.6405 -10.7059 -11.7694 -12.8309	-9.6405 -10.7059 -11.7694 -12.8309	-9.6405 -10.7059 -11.7694 -12.8309
	T(deg)= -8.250	-9.6405 -10.7059 -11.7694 -12.8309	-9.6405 -10.7059 -11.7694 -12.8309		-11.7694 -12.8309	-11.7694	-9.6405 -10.7059 -11.7694 -12.8309	-11.7694	-10.7059 -11.7694	-10.7059 -11.7694 -12.8389	-10.7059 -11.7694 -12.8309	-9.6465 -16.7659 -11.7694 -12.8389	-10.7059 -11.7694 -12.8309	-11.7694	-11.7594	-11.7694	-11.7694	-11.7694	-11.7694	-11.7694	-11.7694
	T(deg)= -7.500	-10.7059	-10.7059	-10.7059	-16.7859	-16.7659	-10.7059		-10.7059	-10.7059	-10.7059	-10.7059	-10.7059	-18.7859	-10.7059	-10.7059	-10.7859	-10.7859	-10.7059	-10.7059	-10.7059
	T(deg)= -6.758	-9.6405	-9.6405	-9.6405	-9.6465	-9.6405	-9.6405	-9.6405	-9.6405	-9.6405	-9.6405	-9.6405	-9.6405	_	_	_		-9.6405			
YCin	T(deg)= -6.000	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735	-8.5735
7 K	T(deg)= -5.258	-7.5051	-7.5051	-7.5051	-7.5051	~														-7.	-7.5051
	T(deg)= -4.588	-6.4353	-6.4353	-6.4353	-6.4353	-6.4353	-6.4353	-6.4353	-6.4353	-6.4353	-6.4353	-6.4353	-6.4353			-6.4353	-6,4353	-6.4353			-6.4353
	T(deg)= -3.758	-5.3644	-5.3644	-5.3644	-5.3644	-5.3644	-5.3644	-5.3644	-5.3644	-5.3644	-5.3644	-5,3644			-5.3644	-5.3644	-5.3644	-5.3644	-5.3644	-5.3644	
	×ŝ	-3.989	-2.588	-2.888	-1.750	-1.256	-1.666	758	500	-,258	6.886	.250	. 500	. 750	1.888	1.250	1.500	1.750	2.000	2,588	3.000

The following is a list of the data in the TRNGENT line sections of the scan:

	, =	999		493	493	493	493	493	493	493	493	493	493	493	493	493	493	493	493	493	493	493	493	493			
	L(in)=	-17.000		-37.6	-37.6	-37.6	-37,6493	-37,6493	-37.6493	-37.6493	-37.6493	-37,6493	-37.6493	-37.6	-37.6	-37.6	-37.6	-37.6	-37.6	-37.6	-37.6	-37.6	-37.6	-32.6	_		
	L(in)=	-16.888		-36.6834	-36.6834	-36.6834	-36,6834	-36.6834	-36.6834	-36.6834	-36.6834	-36.6834	-36,6834	-36.6834	-36.6834	-36.6834	-36.6834	-36.6834	-36.6834 -37.6493	-36.6834	-36.6834	-36,6834	-36,6834	-36,6834			
Y(in)	L(in)=	-15.888		-35.7175	-35.7175	-35,7175	-35,7175	-35.7175	-35.7175	-35.7175	-35.7175	-35.7175	-35.7175	-35,7175	-35.7175	-35.7175	-35.7175	-35.7175	-35.7175	-35,7175	-35,7175	-35.7175	-35.7175	-35,7175			
λ.	L(in)=	-14.000		3.000 -32,8197 -33,7856 -34,7516 -35,7175 -36,6834 -37,6493	-2.500 -32.8197 -33.7856 -34.7516 -35.7175 -36.6834 -37.6493	-34.7516	-34.7516	-1.508 -32.8197 -33.7856 -34.7516 -35.7175 -36.6834	-34.7516	-34.7516	-34.7516	-34.7516	-,258 -32,8197 -33,7856 -34,7516 -35,7175 -36,6834	8,888 -32,8197 -33,7856 -34,7516 -35,7175 -36,6834 -37,6493	-34.7516	-34.7516	-34.7516	. 888 - 32, 8197 - 33, 7856 - 34, 7516 - 35, 7175 - 36, 6834 - 37, 6493	.258 -32,8197 -33,7856 -34,7516 -35,7175	1,500 -32,8197 -33,7856 -34,7516 -35,7175 -36,6834 -37,6493	1,758 -32,8197 -33,7856 -34,7516 -35,7175 -36,6834 -37,6493	-34.7516	2.500 -32.8197 -33.7856 -34.7516 -35.7175 -36.6834 -37.6493	3.000 -32.8197 -33.7856 -34.7516 -35.7175 -36.6834 -37.6493			
	L(in)=	-13.888		-33,7856	-33,7856	-33.7856	-33.7856	-33,7856	-33.7856	-33,7856	-33.7856	-33,7856	-33.7856	-33,7856	-33,7856	-33.7856	-33.7856	-33,7856	-33,7856	-33.7856	-33,7856	-33,7856	-33.7856	-33,7856	-		
	L(in)=	-12.000		-32.8197	-32.8197	-32.8197	-32.8197	-32,8197	-32.8197	-32.8197	-32.8197	-32.8197	-32.8197	-32.8197	-32.8197	-32.8197	-32.8197	-32.8197	-32,8197	-32.8197	-32.8197	-32,8197	-32,8197	-32.8197	-		
	×	Cup		-3.888	-2.500	-2.888	-1.758	-1.588	-1.258	-1.888	758																
į	L(in)=	-4.000		-25.0923	-25.8923	-25,0923	-25,0923	-1.758 -21.715 -22.71349 -22.71549 -23.6434 -24.6893 -25.8923 -	-25.0923	-25.0923	-25.8923	-25.0923	-25,8923	-25.8923	-25,8923	-25.0923	-25.0923	-25.0923	-25.0923	-25.8923	-25.8923	-25.0923	-25.0923	-25.8923			
	L(in)=	-3.500		-24.6093	-24.6093	-24.6893	-24.6093	-24.6093	-24.6093	-24.6093	-24.6093	-24.6893	-24.6093	-24,6093	-24.6893	-24.6893	-24.6093	-24.6893	-24.6093	-24.6893	-24.6093	-24.6893	-24.6893	-24 6993	-		
	L(in)=	-3.000		-24.1264	-24.1264	-24.1264	-24 1264	-24,1264	-24.1264	-24.1264	-24,1264	-24.1264	-24, 1264	-24, 1264	-24.1264	-24.1264	-24.1264	-24.1264	-24.1264	-24.1264	-24.1264	-24.1264	-24.1264	124 1264			
	(in)=	-2.500		-23.6434	-23.6434	-23.6434	-23 6434	-23.6434	-23,6434	-23.6434	-23.6434	-23.6434	-23.6434	-23.6434	-23.6434	-23.6434	-23.6434	-23 6434	-23.6434	-23.6434	123 6434	-23 6434	-23 6434	20.00	1010101		
(4:5)	a(ui)	-2.888		-23 1604	-23 1684	-22 1684	200	123 1684	-23, 1684	-23.1684	-23 1684	-23 1604	1594	123 1694	103 1694	-23 1694	1594	-22 1684	2001.00	-23 1684	-23 1604	123 1661	2001.00	1001.00	-43.1004	Yein	
>	1 (40)	500		200 6075	22 6276	27.67.00	20.00	-22.67.5	22 6775	222 6775	-22 627	-22 627	20000	22 6726	225.01.2	200 6078	22 62 23	20.00	22 6278	-22.01.2	22 62 23	22 6226	22.01.2	-24.07.73	1-22.6775	>	
	(4))()	11.000	200:	4,00	22 .035	-22.1343	-64.1340	-22.1943	22 1045	222 1940	201010	22.174	72.1740	22.1343	20. 00.	20. 1945	25.1943	-22.1943	20. 1940	72.1340	-66.1740	-26.1940	-22.1943	-22.1945	5 -22.1945		
		L(111)=	300	23.6434 -24.1264 -24.6093 -25.0923	-21.6116	-21.7116	-21.(116	-21.7116	211.7112	211.7116	211110	-21.6110	-21.6116	-21.7116	-21.6116	-21.7116	-21.7116	-21.7116	1-21.7116	-21.7116	1-21.7116	3 -21.7116	3 -21, 7116	2.588 -21.7116 -22.1943 -22.667 -23.1004 -20.404 -24.1564 -24.6893 -25.8923	3 -21.7116	_	
		×	Ĉ.		-3.688	-2.588	-2.868	-1.758	990.1-	-1.258	1.000	90/-	995	258	9.886	25.0	996.	35.	1.886	1.256	1.58%	1.756	2.88€	2.586	3.996		

	L(in)=	-11.000	-31.8538	-31.8538	-31.8538	-31.8538	-31.8538	-31.8538	-31.8538	-31,8538	-31.8538	-31.8538	-31.8538	-31.8538	-31.8538	-31.8538	-31.8538	-26.0582 -27.0242 -27.9901 -28.9560 -29.9219 -30.8879 -31.8538	-26.0582 -27.0242 -27.9901 -28.9560 -29.9219 -30.8879 -31.8538	-25.5753 -26.0582 -27.0242 -27.9901 -28.9560 -29.9219 -30.8879 -31.8538		2 + 600 25 + 5753 26 + 68879 -27 + 6242 -27 + 9901 -28 + 9560 -29 + 9219 -30 + 8879 -31 + 8538	3.808 -25.5753 -26.8582 -27.8242 -27.9981 -28.9568 -29.9219 -38.8879 -31.8538
	L(in)=	-10.000	2 000 25 6760 26 0582 27.0242 -27.9901 -28.9560 -29.9219 -30.8879 -31.8538		12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	-28.9568 -29.9219 -38.8879	-28,9568 -29,9219 -38,8879	25 5753 -26 8582 -27 8242 -27 9981 -28 9568 -29 9219 -38 8879	25 5753 226 6582 227.0242 -27.9901 -28.9560 -29.9219 -30.8879 -31.8538	25 4743 - 26 8582 - 27.8242 - 27.9981 - 28.9568 - 29.9219 - 38.8879 - 31.8538	28 5752 - 26 0582 - 27 0542 - 27 9981 - 28 9560 - 29 9219 - 30 8879 - 31 8538	25 575 25 25 85 27 8242 -27 9981 -28 9568 -29 9219 -38 8879	-25 ASB2 -27 A242 -27 9981 -28 9568 -29 9219 -30 8879 -31 8538	300 - 20 - 21 - 21 - 21 - 22 - 22 - 22 -	-26.8582 -27.0242 -27.9901 -28.9560 -29.9219 -30.8879 -31.8538	754 25 5753 26 0582 27.0242 27.9901 28.9560 29.9219 30.8879 31.8538	-26,0582 -27,0242 -27,9901 -28,9560 -29,9219 -30,8879 -31,8538	-30.8879	-30.8879	-30,8879	-30.8879	-30.8879	-30.8879
	L(in)=	-9.000	-29.9219	-29.9219	-29.9219	-29,9219	-29.9219	-29,9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219	-29.9219
	L(in)=	-8.000	-28.9568	-28,9568	-28.9568	-28.9568	-28,9568	-28.9560	-28.9568	-28.9560	-28.9560	-28.9560	-28,9560	-28.9560	-28.9560	-28.9560	-28.9560	-28.9568	-28.9560	-28.9568	-28.9560	-28.9560	-28.9560
Y(in)	L(in)	-7.000	-27.9981	-27.9901	-27 9901	-43.3733 -40.8384 -41.8444 -17.9981	-23.37.33 -26.050c -27.0242 -27.9901	-27,9901	-27.9981	-27.9901	-27,9981	-27.9981	-27,9981	-27.9901	-27,9901	-27.9901	-27.9901	-27.9901	-27,9901	-27.9901	-27.9901	-27,9901	-27,9901
7.	L(in)#	-6.899	-27.8242	-27.8242	-27 9242	-27 9242	-27.8242	-27.8242	-27.0242	-27.0242	-27.8242	-27.0242	-27.8242	-27.8242	-27.0242	-27.8242	-27.8242	-27.0242	-27.8242	-27.0242	-27.0242	-27.8242	-27.8242
	L(in)=	-5.000	-26. ASB2	26.00.00	0000	20.00.02	20.00.00.	126.8582	-26.0582	-26.05.02	26.03.02	2000	126.05.01	-26.9582	-26.8582	-26.8582	-26,0582	-26.0582	-26.0582	-26.0582	-26.0582	-26.0582	-26,0582
	=(ui) =	14.500	25 5753		20.00						20.00	20.00	25.0.00	25.01.00	-25.5753	-25.5753	-25.5753	250 -25.5753	-25.5753	-25.5753	-25.5753	-25.5753	-25.5753
	>	3	0	000	0000	2.000	1.	0000	9 6	986	904	9 6	0.00	9 6	0 0 0		200	2000		7.00	20.2	 	3.888

7.000 0.000

0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.

The Z-coordinates for all the points. IV.

The following data is derived from the data file(AL.P28/AL.P15) described here:

Page 2

L(in)= 1.000

Z(in) = L(in)= 1.500

2.000 L(in)=

	,			,	•	•	,		,	•																		
	L(In)=	10.000		•	•		•	•	•	•								.0031									_	•
	L(11)=	11.000		•			•											. 0031				_						. 8663
	L(in)#	12.689		.0070														. 6831				_						_
	L(in)=	13.888		. 8874	9999		. 0864	. 0061	. 8858			-			_			46.00		_	•	•		•	21.00	•	•	. 66663
Z(in)	L(in)=	14.000		9074	0074		6900.	9906	6963		•		Ī	Ī				000		0000	•	•	. 8826		0000	_	_	. 6967
ž	L(11)=	15.000		9974			. 0074	. 8871	9989	2200		2000	. 9969	. 0057	000	0.00	4 4 6 6	4400	9 6	. 6643	. 6639	. 8036	. 8833		7000		1799.	- BB14
	(in)	16.000		0700	0 0	9,99.	8688	9000	4700		7,00.	99.	. 0067	9965	0900				000	7089.	. 8649	. 8846	9943			0500.	•	9000
	E(ni)	12 000	200:1	0200	0.00.	8200.	9982	9 9	0000	0000	99.	•	•			1000	•	. 886	•	•	. 0061	92.00	7100	•	•		. 0047	
	,	c ((Lu)	0	9.000	-2.500	2000		000	-1.500	-1.238	-1.868	758		9 0	2.50	9.898	. 258	. 588	. 750	1.888	200	9 0		90.	2.888	2.588	000

ľ.	_	\perp				_		_	_		_			_	_	_		_	_		_		-	_	_	_	-
	1011)	900	. 8859	9957		000	. 8855	. 8854	. 6853																		_
	x į	ì	-3.000	2008	9 6	-2.000	-1.750	-1.588	-1.258	200			990	PC7	9.000	. 250	500	250		90.	907.1		1.00	2.000	2.588	3.888	
	L(in)=	18.688	0	•	•	•		•	•	•	-									. 0026						_	/ A889.
	L(in)=	11.000		·	•															. 9825							. 6663
	L(in)=	12.888		•	•		•	•	•	Ī										. 8826							. 6662
	L(in)=	13.000		•			-													.0028						_	. 6663
(11)	L(in)=	14.000		. 0074	. 8874			. 9966	. 6663	. 0060	. 8857	9854	1995	0 7 0 0	0100	. 6645	. 6642	. 8839	. 8636	. 0032	. 8829	9090			. 6828	. 8613	2000
ř	(ui)	15.000		•		•	•	•	•	•				•	•	•	•			98939				•	•	•	. 6014
	Cinia	16.000																		99.0				_			
	= (4 5) -	12 999		9299		•				8282	2200		0 0	5.00.	1 200 .	. 0069				1900							
-	,	< 3		000	200	1000.2	-2.888	-1.758	1 500			999.1-	000	- 566	258	9.999	258	900			000	1.600	1.066	1.758	2.888	2.500	3.000

,	L(11)#	3.500	. 8859	. 6057	. 8856	. 8855	. 0054	. 8853	. 0051	. 0050	. 6649	. 0048	. 0047	. 0645	. 0044	. 8843	. 9941	. 6646	. 0038	.0037	. 6635	. 6632	. 0028
	L(in)=	4.000	 6908.	. 9957	. 8855	. 8854	. 0053	.0052	. 0051	. 6658	. 0049	. 0048	. 9946	. 0045	. 0044	. 8642	. 0041	66889.	.0038	.0036	. 8835	. 0031	. 9928
	L(10)=	4.500	69929	. 8957	. 8855	. 8854	. 8853	. 9952	. 8851	. 8858	. 0048	. 0647	. 0046	. 6645	. 0043	. 0042	. 0040	6699	. 8837	. 8836	. 0034	. 6631	. 8027
	L(in)=	5.888	. 0059	. 8957	. 8855	48.66	. 0053	0052	. 0050	. 8849	. 8648	. 8647	. 6645	. 6644	. 0042	. 0041	. 8639				•		. 0026
î u Ş	L(in)#	6.899	. 8059	9836	9854	20.0	. 8852	8858	9889	8998	8046	. 6845	. 0043	. 0042	0.0040	6699	. 8837	. 8836	9834	9932	8888	9822	. 6623
Z(in)	L(in)*	7.680	. 0059	9888	45.00	0.00	1000	0 4	. 4	9846	9844	9843	. 6841	460	9038	9899	4688	9933	1000	9000	7000		. 0019
	L(in)=	8.666	9889	90.00				0.4	9499	. 44	6.460	2 4 8 8	900	2000			9 6		7000	4000		0.00	100
	-(ui)	9.999	1900	•	•	9 0	4 6 6 6 6	9 6	7100	4466		9 6	7500				000	•	•		•	•	
_	×	î	000	90.0	000.7	090.7-	900	990	900	7 000	0 0	9 6	000	900	007		000	9 6	1.600	1.000	0000		990

TITLE: HLHDDIN Dipole-Polar Grid Right End(Z=0.00)Offset arc scan R=2.08m(E=1000M ev>/ALADDIN Dipole-Polar Grid Left End (Z=0.00) Offset arc scan R=2.08m

Run number (28/15) was started at 9:9:40AM/9:48:5AM on 7/12/85:7/3/85. The scan area is defined for this run by the parameters for region #1 in the geometry file named ALPRE/ALPLE.

The following is a list of the data in a TANGENT line section of the scan:

P49e 4

The following is a list of the data in the RRC section of the scan:

	T(deg)=	1.500		. 0025	. 0024	9822	100	1000	9799	. 9919	. 0019	. 0018	2100		9100.	. 6615	. 6614	01.00		1100	9199	6000.	. 6668	ABBE	900		. 0002	8881	
	T(deg)=	2.258		. 0025	. 0023	0000	100	1700.	9299	. 8828	. 0019	. 0018	2100		9100.	. 9015	. 0014	6100	0.00	7100.	. 6611	. 9918	. 0008	2000		9000.	. 6663	0.0000	•
	I(deg)=	3.600		. 0023	. 0022	BCBB		6100	9199	. 0018	. 0017	. 9916			* 199.	. 0013	. 0012	200		0100.	6000.	8000.	. 0006	2000	200	+000.	. 0001	9992	-
	T(deg)=	3.750		. 0021	. 8019	2100	7100	0 10	C188.	. 0015	4100.	9913	0.00	7100.	1199.	. 0010	9888	9000		0000	. 6665	. 0004	. 8883	Capa	1000	9999	8662	- 0005	-
Z(in)	1(deg)=	4.500		. 0018	. 0016	4100		200	. 6612	. 6011	. 0010	8888	000	0000	7999.	9000.	9995	4000		7000	. 6661	0.0000	8881	•		6664	0006	- 9999	
2	T(deg)=	5.250		.0016	. 0014	0100	7 000	9199	. 8689	8000.	7000.	9000		0000	. 6863	. 8882	1999	0000		1000	6663	0004			0000	6668	-, 0010	- 0013	
	T(deg)=	6.000		. 0015	. 0013	0	9199.	. 000	2000.	9000.	. 0005	2000		7000	. 9991	0001	- ABBD	0000	200				•	000	00.		0614	- 9917	
	T(deg)*	6.750		. 8615	9912	000	6999	. 9998	9000.	. 6665	9884	0000	300	1000.			- 9994		2000			6669				0014	-, 9916	9199	
	×	: Gu 5		-3.000	-2 500		7.000	1. 738	-1.500	-1.250	1.000	7.0	2 6	pac ·	250	999.	9.0	9 6	9 1	AC.	1.000	1.258	225		90.	3.000	2,500	9	,
		1 (deg)=	15.010	0	2	. 6646	. 6638	. 0036	. 9834	0000	200	. 6631	. 0030	.0628	9826	#C00	700.	. 6623	. 0021	. 8628	0.00	9100	0100	. 6614	. 9912	. 0018	1000		. 8883
		1 (deg)=	16.100	,,,,,	0400	. 0043	. 0040	. 8839	9837		0000	4500.	. 6633	. 0031	9000	000	0700	9200.	. 8824	. 0023	1000			. 881	. 0015	8014		0100	9000.
		1 (de g) =	13:163	0,00	9 9	. 6645	. 8842	. 0641	0.04	0000	000	\£99.	. 0035	. 0034	9932		200	. 0029	. 9927	. 9926	4000		7700.	6886	. 6618	9817		200	6000.
		T(deg)T	13.300		9099	. 6647	. 0045	. 6643	0042		***	. 66939	. 6638	. 0036	2000		2000.	. 0032	. 9638	. 9828	2000		. 0043	. 6623	. 9921	9199		0100.	. 0012
	Z(in)	T(deg)=	13.00		1689	. 0049	. 0047	9846	4400		200	. 0042	. 0040	. 8839	9937	200	9500.	. 8634	. 6633	. 9931	000		9700	. 9926	. 9924	CCBB	1000	9199.	. 9915
i	ž	T(deg)=	14.638		. 6653	. 0051	. 6649	9947	9000		. 8843	. 8844	. 0042	. 6841	0 4 0 0	9 6	8599.	. 0037	. 8835	. 0033		3000	9599.	. 0028	. 0027	BC00	2000	1700.	.0017
		T(ded) T	14.623		. 8855	. 8852	. 0050	99949	. 0	0 0	. 864	. 9946	. 0044	9843		7400	•	6600.	_	AFRA		* 500.	7500.	. 0031	. 9829	2007	700.	•	. 0020
ı		T(deg)=	15.000		9888.	. 0054	. 0052	1000		•	. 0048	. 9947	. 9946					. 0041	68839			2500.	•	. 0033	•		•	•	. 0022
٠		×	(ii)		-3.868	-2.500	-2.000	250		990.1-	-1.258	-1.880	750	9		0.2	0.000	. 250	508	7.50	9000	1.668	1.258	1.500	1.758		7.000	2.588	3.666

	a CBab :	373		. 9828	81.88		. 8810	. 6015	00.0		. 6612	. 9011	. 0010	6000		999	. 8886	. 8885	6888		7000	. 000	0001	- 8882		+ 000	0005	0008	- 0011	
	a CBapy	. 758		. 6823	1000		. 100.	. 0018	2100		9100	. 0015	. 0014	9913		. 6611	. 6618	6000.	Sees		999	. 6665	. 0004	6000		. 9991	6.8888	0003	2000	
	×	(u)		-3.000	- 2 500		-2.986	-1.758	008	000	-1.250	-1.000	758	0.00		AC7	9.99	. 258	200		90)	1.666	1.250	668		1. (38	2.996	2.500	000	
	T(deg)=	7.500	-	2100		. 6613	. 8618	9000		7000.	. 6665	4666	COOC	2000.	. 9991	0001	8882	1000	1000	6665	0007	8888	8188		6011	-, 0013	4100 -	100		6626
	I(ded)=	8.258		9		9616	. 8812	2 2 2		6999	. 0007	2000	2000	1000	. 6662	1000.	-, 8881	0000	2000	6664	0006	- 9998	1 2 2 2		6011	0012	•		100	9929
	T(deg)=	9.000		0000		. 6613	. 9915	4100	100	. 0012	. 9018	0000	7000	1000	. 8880	. 0003	. 8882	000	0000	6662	8864	- 0005	- 9997		6669	0010	CIER		C100.	0019
	T(deg)=	9.758		2000	0 1	. 6023	9019	9 9	0100.	. 0016	. 0014	000		1100	6000	. 8867	9885	7000		. 8882	00000	- 0002	000	200	0005	0007	0000		0014	0016
î	T(deg)=	988		0	200	. 8828	4000		. 006.	. 0021	9199	7.100		99	4100.	. 9912	81.88		. 0000	2000.	8893	8888			0.0000	8882	4000		0000	0011
7(in)	T(deg)=	2.0		7000	0200.	. 8833	88.88		9799.	. 0026	8000	0000	200	. 604	. 0019	. 9618	21.00		* 100 ·	. 8912	. 6011	0000			. 8885	вава.	- 600	1000	8882	0006
	T(ded)T	F C 9	2	0	6000	. 0035	0000		. 6631	. 0029	2000	9000		. 6624	. 9922	. 8821	9199		. 100.	. 8615	. 8814	000		99.	. 6668	BBB6	7000	1000	0.0000	0003
	T(deg)#	1000	20.11		1 +00 .	. 0038	#C00	0 0	. 8633	. 0032	9000	0 0	. 200.	7299.	. 8825	. 9824	0000		9799.	8100.	8817			2100.	. 0011	922		000	. 6663	6.6666
_	×	- (s			-3.000	-2.598	000	100	11.738	-1.588	0.10	9 6	000	967	- 580	258	9 6	0 0	PC7 .	. 500	750	0 0	900	1.200	1.566	750		7.000	2.588	3.668

\$ C & D :
t he
ģ
section
ARC
the
÷
data
t he
ō
1 5 5
49
-
following
T.

P 294 B

The following is a list of the data in the TRNGENT line sections of the scan:

	L(in)=	-17.000		. 0052	. 8852	7 200	0000	. 6654	. 0053	. 0052	9 6	9000	. 6649	. 6648	. 9946	. 9645	. 8644	0042	7,00.	. 9041	.0039	. 6638	. 0037	. 8835	7000	200	.0031	.0028	
	L(in)=	-16.888		. 6852	. 8852		900	. 0049	. 8048	0047	2700	0.00	. 0046	. 6645	. 0044	. 6643	8842	1 400		. 9948	6600.	. 0038	. 8837	. 8836	000	0000	. 0034	. 8832	
Z(in)	L(in)=	-15.000		. 0048	9948		*99.	. 8046	. 9845	1.400		100	. 0043	. 0043	. 0042	. 6641	9941	0.40		6699	6600.	8699	. 8037	. 0037	7000	9599.	. 6935	. 6633	
>2	L(in)=	-14.000		. 0048	9846		C#88.	4400.	. 9944	9943		7 600	. 6642	. 9041	. 6641	. 0040	9699	0000	6699	. 6638	. 0038	. 0037	. 6637	9898		csaa.	. 6634	. 8633	•
	L(in)=	-13.666		. 8647	1.400		4400.	. 0043	. 0042	0042		9	. 0041	. 6646	6699	. 0039	80.00		200.	. 8837	9600.	. 8036	. 0035	45.00		. 8834	. 8633	. 6631	
	L(in)=	-12.000		. 9947	8848		. 6643	. 8642	. 8842	1400	•	•	•	•	•	•	'	•	•	•	. 8834	•	•		•	Ī	Ī		-
	×	cin		-3.000	200		-2.696	-1.750	-1.500	200	300		750	500	258	9.000	200		990.	. 758	1.000	1.250	1.588	750		2.888	2.500	3.000	
	- (i o) =	-4.000		9948		4400.	. 9849	9889	7000	200	C 5 9 9 .	. 6633	. 0032	. 0030	90038	9000		0799	. 0023	. 0021	. 9919	. 9918	2100		100.	. 6613	. 8889	9000	
	1 (4 %) =	-3.588		8488		4400	. 0041	9699	7000	200	CEAB.	.0034	. 8832	. 8838	8088	2000	- 6	C200.	. 8823	. 0021	. 9929	8188	2100		+100.	. 8013	6000	. 9886	
	- (- () -	13.000		9840	2 1	. 6640	. 9941	9000		200	. 0036	. 8634	. 8832	98939	000	2000	200.	C799.	. 0023	. 9922	9929	81.00	7		CIAA.	. 8813	9018	. 0006	
	- / : : / -	10 10 E		0700		. 6645	. 6641	0000		0	. 8636	. 0034	9933	9831	000		700.	9200.	. 0024	. 9822	9000	9		100.	C 199.	. 6613	200	9000	
, 1	Z	-2 999	200:3	0700	0	. 6645	. 9842	9.00	960	. 6638	.0037	. 0035	6699	1000			0 0 0 0	. 0026	. 0025	8823	1000			2199	.0016	. 6614	0.00	7000	-
ì	3	L(in)#	1.000	0,00	A # # # *	. 9946	9942		1 600	•	•				•						2000								
		L(in)#	1.000		acaa.	. 0046	6 400	•	400	. 9948	. 0038					•	•												<u>.</u>
•		L(in)=			9099	. 8847	0044		7400.	. 0041	6699.	. 9937	2000	200	1000	2500	. 6631	. 9929	9827	1000	. 200.								
-		×	Caro		-3.000	-2.588	000	7.000	-1.758	-1.598	-1.258	1 989		9 6	990	AC2	9.669	. 250	666	0 0	900		1.256	1.500	1.758	000	9 6	7.000	3.866

	L(in)=	-11.000	•	•	•	•	•	•	•	•		Ī	Ī									. 6627	
	L(in)=	-19.999	. 0047	. 0045	. 9942	. 0041	. 0040	6699.	. 0038	. 0037	. 8836	. 0035	. 8833	. 0032	. 6631	. 6639	. 8829	.0028	. 8827	.0026	.0025	. 8823	.0021
	LCin)*	-9.000	•	•	•	. 6646	•	•	Ī													•	. 8817
	LCin)*	-8.666	. 0047	. 6644	. 9841	. 0040	.0038	. 0037	. 0035	. 8634	. 6633	. 0031	. 0030	. 0028	. 8827	. 8826	. 8824	. 0023	. 8822	. 0020	. 0019	.0016	. 0014
Z(in)	L(in)=	-7.888	•	•	•	. 0039	•	•	•	•	•	Ī							_		•	•	_
2 (L(in)*	-6.999	. 6647	. 0044	9940	. 6639	. 0037	. 9935	. 6634	. 0032	8638	. 8829	. 8827	. 6625	. 9924	. 0022	. 6621	. 0019	. 9918	.0016	. 6614	. 0011	
	L(in)=	-5.888	. 6647	9844	9949	6883	6837	. 8835	. 8833	. 0032	9699	. 0028	.0026	. 8825	. 0023	. 8821	. 9828	. 8018	. 0016	. 8815	. 8813	. 0010	. 0007
	L(in)=	-4.588	.0048	4480	240	9899	. 0037			. 6832	8838	. 0028	. 0026	6625	. 0023	. 8821	. 0020	9918	. 8816				•
	×	- G	-3,000	988	9 6	-1.750	-1.588	-1.258	2000	750	1000	- 258	9.99	000	588	750	1.888	1.250	588	25.0	22.0	0.00	3.888

V. Auxiliary probe data for left side only. A NMR

The following data is derived from the data file(AL.P15) described here: TITLE:ALADDIN Dipole-Polar Grid Left End (2=0.00) Offset arc scan R=2.08m Run number (15) was started at 9:48:56M on 7/3/85.

The scan area is defined for this run by the parameters for region #1 in the geometry file named ALPLE.

The following is a list of the LOGGED data for probe #1:

	^	98	89	99	99	99	99	906	99	90	99	99	88	90	999	.00	990	996	99	300	996	166	998	386	366	500	200
Value	(Gauss	83.	83.	83.	85.	85	85.	15582.9	5583.	5583.	833.	83.	83.	383.	83.	583.	583.	583.	583.	583.	584.	584.	584.	584.	584.	584.	584.
Time	Hr:Min							11:04AM					11:1388	11:15AM	11:17AM	11:19AM										11:40AM	
Date	Mo/day							JUL/ 3					• •	• •		• •										JUL / 3	JUL/ 3
Value	(ganss)	582.30	582.6	582.58	582	582.	5582.	15582.288	5582.	5582.	5582.	582.	5582.	5582.	5582.	582.	5582.	5582.	5582.	582.	582.	582.	582.	582.	583.		582.
Time	Hr:Min	••	••	••	10:07AM	10:09AM	18:11AM	10:13AM	10:15AM	10:17AM	10:19AM	19:21AM	10:23AM	10:25AM	10:27AM	10:29AM	10:31AM	10:33AM	10:35AM	10:37AM	10:39AM	10:41AM	7	4	: 46	4	5
Date	Mo∕day	JUL / 3						JUL / 3																			

The average value and the standard deviation are:

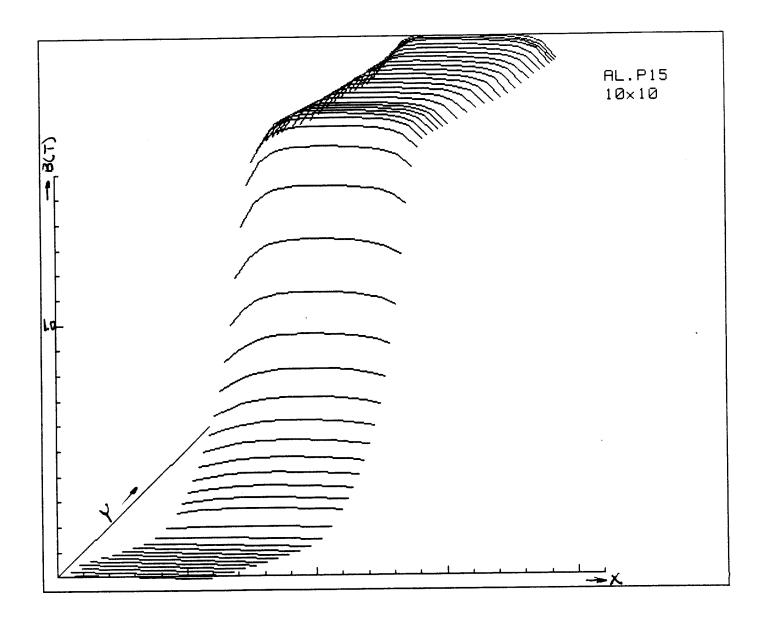
Acerage# 15582,983 Gauss Signe# . 783 Gauss or . 885 %

Total Deviation= 2,400 Gauss

V.B. Temperature of Hall probe.

The following data is derived from the data file(AL.P15) described here: TITLE:ALADDIN Dipole-Polar Grid Left End (Z=0.80) Offset arc scan R=2.88m Run number (15) was started at 9:48:5AM on 7/3/85.

The scan area is defined for this run by the parameters for region #1 in the geometry file named ALPLE.


The following is a list of the LOGGED data for probe #2:

The average value and the standard deviation are:

Ruerage= 24,117 °C Sigma≈ .681 °C or 2,822 %

Total Deviations 2.217 °C

VI. 3D plot of left side data only.

VII. Normalized, matched, and merged field values for all points.

The following data is derived from the data file(AL.P28/AL.P15) described here: TITLE:ALADDIN Dipole-Polar Grid Right End(Z=0.00)Offset arc scan R=2.08m(E=1000M eV>/RLADDIN Dipole-Polar Grid Left End (Z=0.00) Offset arc scan R=2.08m

evy Alhubbin Dipole-rolar uriu Lett End (2-6000) Olisava at attain 1-100m. Run number (28/15) uas started at 9:9:40AM/9:48:5AM on 7/12/85:7/3/85.

The scan area is defined for this run by the parameters for region #1 in the geometry file named ALFRE/ALPLE.

The following is a list of the data in a TRNGENT line section of the scan:

		NOR	IAL I ZED-FI	eld(Gauss	NORMALIZED-FIGIGGGAUSS)-MATCHED			
×	L(in)=	L(in)=	L(in)=	L(in)=	L(in)=	L(in)=	L(in)=	L(in)=
QUE)	17.000	16.999	15.000	14.000	13.666	12.999	11.000	10.000
-3.666	0.0	9.0	9.0	9.0	-49.1	-55.1	-60.1	-62.1
-2.508	0.0	0.0	-38.1	-43.1	-49.1	-56.1	-61.1	-63.1
-2.000	-30.1	-34.1	-39.1	-45.1	-50.1	-57.1	-62.1	-64.1
-1.758	-30.1	-34.1	-39.1	-45.1	-51.1	-57.1	-62.1	-64.1
-1.500	-38.1	-34.1	-40.1	-45.1	-51.1	-58.1	-63.1	-64.1
-1.250	-31.1	-35.1	-40.1	-46.1	-52.1	-58.1	-63.1	-64.1
-1.669	-31.1	-35.1	-41.1	-46.1	-53.1	-59.1	-64.1	-64.1
750	-31.1	-36.1	-41.1	-47.1	-53.1	-69.1	-64.1	-64.1
508	-31.1	-36.1	-41.1	-47.1	-54.1	-69.1	-65.1	-64.1
- 258	-32.1	-36.1	-42.1	-48.1	-54.1	-69.1	-65.1	-64.1
0.000	-32.1	-37.1	-42.1	-48.1	-55.1	-61.1	-65,1	-65.1
. 250	-32.1	-37.1	-43.1	-49.1	-55.1	-62.1	-66.2	-65.1
. 500	-32.1	-37.1	-43.1	-49.1	-55.1	-61.1	-66.2	-65.1
. 758	-33.1	-37.1	-43.1	-49.1	-56.1	-62.1	-66.2	-65.1
1.888		-38.1	-43.1	-50.1	-56.1	-62.1	-67.2	-65.1
1.258		-38.1	-44.1	-58.1	-56.1	-63.1	-67.2	-65.1
1.588		-38.1	-44.1	-58.1	-57.1	-63.1	-67.2	-66.1
1.758		-38.1	-44.1	-51.1	-57.1	-63.1	-68.2	-66.1
2.008	'	-39.1	-44.1	-51.1	-57.1	-64.1	-68.2	-66.1
2.500		-39.1	-45.1	-51.1	-58.1	-64.1	-69.2	-67.2
3.999	-34.1	-40.1	-45.1	-52.1	-58.1	-65.1	-69.5	-68.2

	L(in)=	3.500	0.00		1967.7	2066.3	2107.3	2142.4	2172.5	2198.5	2219.6	2237.6	2252.6	2263.7	2272.0	2278.7	2282.7	2284.7	2284.7	2282.7	2279.7	2274.0	2257.3	
	L(in)=	4.000	7 844		1551.2	1636.8	1672.2	1702.6	1728.6	1751.7	1770.7	1786.7	1800.4	1810.5	1818.5	1824.8	1828.8	1831.8	1832.2	1832.5	1829.8	1826.2	1814.8	0 700.
	L(in)=	4.500	200		1178.5	1252.3	1283.7	1309.8	1333.8	1353.2	1370.9	1384.6	1397.0	1407.8	1414.3	1421.0	1425.0	1428.0	1438.0	1430.0	1429.0	1427.0	1419.0	
-MATCHED	L(in)=	5.000	27.0		849.2	913.8	946.0	964.1	984.1	1992.1	1017.2	1030.2	1041.2	1050.3	1057.3	1063.3	1068.3	1071.3	1073.3	1074.3	1073.6	1073.0	1067.3	0 0000
rld(Gauss)	L(in)=	6.888	100		338.7	379.8	397.9	413.9	427.9	441.0	452.0	462.0	470.4	477.8	483.7	488.1	492.1	495.4	498.1	499.1	500.8	500.4	499.1	
NORMAL I ZED-Fiel	L(in)=	7.888	-	2	72.5	92.2	100.2	108.2	115.9	121.9	128.3	133.3	137.6	141.3	145.3	148.3	150.3	152.3	154.3	155.7	156.3	157.3	157.3	
NORME	L(in)=	8.889	60	3	-24.1	-18.0	-15.0	-12.0	-9.0	-7.0	-5.0	-2.0	-1.0	1.0	2.0	9.4	5.0	6.9	6.9	7.0	7.0	7.0	7.0	•
	L(in)=	9.000			-56.1	-54.1	-54.1	-53.1	-52.1	-52.1	-51.1	-50.1	-58.1	-50.1	-49.1	-49.1	-49.1	-49.1	148.1	-48.1	-49.1	-49.1	-49.1	
_	\vdash	-1	0	-	-2.500	-2.000	-1.758	-1.500	-1.258	-1.888	758	500	258	999.9	250	98	758	99	258	566	756	999	2.568	000

	L(in)=	. 566	 6114.5	6608.1	6933.7	7043.3	7124.8	7186.9	7232.0	7264.4	7288.7	7304.4	7316.1	7321.8	7324.5	7323.5	7319.8	7310.8	7297.7	7278.4	7251.7	7160.2	6992.2
NORMALIZED-Field(Gauss)-MATCHED	L(in)=	1.000	5004.0	5377.7	5642.9	5740.0	5815.2	5875.3	5918.7	5953.8	5978.5	5998.2	9.6009	6018.6	60209	6921.9	6917.9	6.0109	6000.5	5983.5	5960.5	5889.3	5767.8
e]d(Gauss	L(in)=	1.500	4124.0	4409.6	4623.0	4705.2	4772.3	4825.4	4867.8	4901.5	4925.9	4945.3	4958.6	4968.7	4972.7	4974.7	4972.0	4967.7	4958.8	4944.6	4926.9	4871.5	4782.3
ALIZED-Fi	L(in)=	2.000	3406.1	3629.2	3801.8	3870.3	3926.1	3973.8	4011.2	4042.3	4966.0	4085.1	4098.1	4107.1	4113.5	4115.5	4115.1	4110.4	4103.1	4093.1	4079.1	4037.8	3971.8
NORM	L(in)=	2.588	2894.6	2984.0	3123.6	3180.7	3229.5	3269.9	3303.6	3331.3	3353.7	3370.8	3383.8	3392.8	3398.8	3402.8	3402.5	3400.1	3396.5	3388.1	3378.4	3347.8	3299.6
	L(in)=	3.888	2292.3	2440.0	2556.2	2685.8	2645.4	2680.4	2789.8	2734.6	2753.9	2778.6	2782.6	2792.0	2798.0	2801.3	2883.0	2802.7	2798.7	2793.7	2786.0	2763.6	2728.5
-	×	GE C	-3.686	-2.588	-2.888	-1.750	-1.568	-1.258	-1.868	-, 758	. 500	258	9.889	. 258	. 500	. 750	1.888	1.259	1.588	1.758	2.996	2.588	3.000
								,								_	_		_	_	_	~	~

The following is a list of the data in the ARC section of the scan:

	T(deg)= 1.500	14434.0	15197.1	15493.8	15524.1	15543.8	15556.1	15564.1	15569.1	15572.8	15574.1	15574.8	15572.8	15579.1	15563.4	. A A A A		10039.8	15516.7	15478.0	15298.9	14748 3																										
	T(deg)≈ 2.250	14360.4	15171.8	15486.8	15519.9		15552.9			15568.9	15570.6	15570.6	15569.6		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_	100001	15513.1	15474.8			-																									
	1(deg)= 3.888	14293.0	15145.9	15478.3	15511.3	15533.1	15545.1	15554.4	15559.4	15563.1	15563.7	15564.4	15562.1				10044.1	15530.4	15507.0	15470.3	15301.4	000	10.66.41																									
		↓—	15150.7	10419.4	8 . 60 . 60	5528.2	15541.9	15549.5	15555.5	15558.9	15559.5	15568.5	0			7 00001	15539.9	15526.2	15503.4	15467.1	8 000		14/46.3	-MATCHED																								
14(Gauss)	T(deg)=	14388.0	15163.8	15417.2	13470.2	4.000	15535.3	15543.6	15548.3	15552.0	15553.3	4.5.4	7 0 2 2 3	0.00	5 .640.1	13343.6	15534.6	15519.6	15496.9	9 9 9 9			14/42.4	eld(Gauss																								
NORMALIZED-Field(Gauss)-MATCHED	T(deg)=	14424.5	15170.5	15413.8	13463.1	_	15528.2	15536.2	15541.2	15544.2	5846.2	2 2 2 2 2		0.4400	7.15001	15535.5	15525.5	15511.8	15487.4		0 6904	0.1000	14787.9	NORMALIZED-Field(Gauss)-MATCHED																								
NORMA	T(deg)=	14428.5	15165.2	15465.5	15456.5	10400 . W	7 20 20 20 20 20 20 20 20 20 20 20 20 20	4.926.4	15531.0	15535.7	4 46 44		0 0 0 0	19939	15532.7	15526.7	15517.6	15502.6	8479 K		0 0 0	13539.0	14692.6	S OX	Toden	375	2.007	0 61011	13613.0		10470.0	10060			4.0000	4.00	0.00	10001	15575.1	13374.4	15570.4	15565.1	15555.4	15540.1	15516.3	15476.0	15288.5	14768.0
	T(deg)=	14398.6		15392.2	15443.3	15475.3	13474.0		4.00.00	1.0000		1000	10054	15524.1	15519.7	15516.0	15586.6	15492.6	0 0 7 7 8 7	200	15431.6	15253.3	14701.3		1/4007	750	a 4470		13607.0	200	10490	10056.	0 0	9 4 4 4 4	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100.4	1.4.000	13376.1	15576.1	15574.4	15571.1	15565.1	15555.8	15541.8	15516.7	15477.7	15291.2	14717.3
	十	-3.000	-2.500	-2.000	-1.758	-1.588	9000		9 6	9 6	900	9 6	907	. 568	. 758	1.000	1.258	1.588		000	2.000	2.588	3.668	_	,	(in)	d	9	990	200.7-	90.1.	900	900	7 200	9 6	990	907.	999.9	. 258	. 566	. 758	1.666	1.258	1.588	1.758	•	2.500	3.888
,	T(deg)=	4109.1	4876.6	5137.4	5194.5	5229.0	0.000.00 0.000.00	0,000,0	0.000	0.000	0.100	0.000	3,296.0	5296.0	15293.3	15287.7	15279.6	15264.6	5040 1	1.000	15264.5	0.25901	14499.0		T (dec) T	7,500	14336.8	0.01161	15373 6	4 20 20		1.0101.1	- 0079	4 600.0	15566.1		7.60001	12211.1	15512.1	15510.1	15507.8	15501.8	15494.4	15480.1	15459.1	15421.1	15253.5	14726.1
	T(deg)= 1	1	14812.8	15085.2	15146.2	15185.3	13216.1	13240	18247 7	4 050		1.000	10000	15256.7	15254.1	15250.1	15240.4	15225.4	1 5000		15163.9	14991.	14464.5		F	8.250	14242 5	2828	1 2 4 8 . 0	0.00	2000	10100	4 4 7 2 2 4	4 4 4 4 4	2400	7 000		13492.8	15493.4	15492.1	15489.4	15483.1	15476.4	15461.4	15441.4	15405.8	15245.5	14753.4
	<u> </u>	13.163	14689.8	14984.3	15052.1	15896.1	10124.1	21111	0.171	4717		0.00	10100.0	15179.0	15177.8	15171.0	15161.2	15146.5	100	1.000	2003	14968.5	14389.6		Ł.,	9.666	14150.6	4 5 5 6 5	43.00	2222	0.000	10416.3	. 6447		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1010E	0.000	13467.3	15468.7	15466.7	15464.7	15458.7	15451.7	15437.0	15417.3	15380.9	15221.7	14741.4
THUI OF SERVICE OF SER	T(deg)=	13508.7		14726.5	14805.1	14856.7	14676.5	4 4 9 2 9 4		14941		0.000	2.906.6	14956.2	14953.2	14947.2	14937.4	14921.0	7007		14836.6	14681.3	14179.5	U-MATCHED	1/460/1	9.750	14175 9	4.68		0.010	0.000	0000		4.00	4.24.24		9.69.0	15441.	15441.7	15441.8	15438.7	15433.0	15424.7		•	15354.5	15191.3	14695.6
, 1 d / C suce 6	T(deg)=	13.875	13647.4	14024.0	14119.2	14180.2	14221.	14640.	7 7007 7	14204.4	1 1001	14696.	14301.4	14301.1	14299.4	14293.4	14283.1	14267.4		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14202.2	14833.7	13574.9	6 1 d (Cause	12000	10.500	4298 6	4000	4 9 9 9 9 9		7 7 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10001		0000	15.000.3	7 707 1	10000	13467.	15410.1	15409.7	15496.4	15402.1	15393.3	15386.0	15358.3	15321.6	15152.0	14631.0
CHOTOMAC AND STATE OF CONTRACT COMOCH	T(469)=	14.258	12172.8	12586.6	12693.4	12765.9	2000	20000	1.000.	14000.	1.0001	1.4964.1	12966.	12908.4	12986.4	12901.4	12891.4	12876.4		4.70971	12815.3	12661.3	12275.0	CHOTOM-(*****) Plais-Cart low down	1000/1	11.250	4200	14971	14771.6	2000	10573.0	9.77	2000		0.000	2000	10368.4	15378.7	15371.7	15370.4	15368.7	15363.0	15355.8				15109.3	14573.5
000	T(deg)=	9355 3	10168.4	10583.6	18699.4	10781.2	16833.6	0.000		0.000	0.0000	0.000	16941.8	10943.2	10941.2	18935.8	10926.8	19913.1		10000	19856.6	18724.1	10419.8	2	1-1007/1	11.625	14192 7	4 4 9 4 7 6	2 0 0 0 0 0 0 0 0 0	0.0000	1000	10000	0.000	0.000	0.0000	0.0400	2 . 4 . 0	15347.4	15348.8	15347.8	15346.1	15340.4	15332.4	15318.8	15297.1	15260.0	15085.8	14546.6
	T(deg)=	7523 1	8169.2	8550.6	8668.2	8752.7	8811.1	0.000	10000	0.00		8758.3	8933.3	8934.3	8932.3	8927.3	8918.3		9 0	2007	8850.2	8740.0	8514.5		T/4001	12.000	9	0000	14710.4	1.7.101	13666.4	13261.3	0.00000	106200.7	0 - 0 a c u -		_	_	<u>-</u>	15323.3	_	_	15307.6	15293.6		15234.	_	14524.1
_	×	(11) aga 6	-2.569	-2.666	-1.758	-1.568	-1.250	1.000	900	9 6	907.	9.000	. 250	588	. 758	1.000	1.258	200	0 0	90.	2.000	2.500	3.686	-	,	(2)	0	9 6	2.000	200.7	900.	990	900	1.000	900	990	907	9.699	. 259	. 588	. 750	1.866	1.258	1.588	1.758	2.800	2.580	3.669

The following is a list of the data in the ARC section of the scan:

-	•	GMGCN	1 12FD-Fi4	NORMAL 12ED-Field(Gauss)-MATCHED	MATCHED				-		a wach	11 17FD-Fie	NOBMA: 17FD-Field(Gauss)-MATCHED	-MATCHED		- !	Page 6
×	T(deg)=	T(deg)=	T(deg)=	T(deg)=	T(deg)=	T(deg)=	T(deg)=	T(deg)=	×	T(deg)=	T(deg)=	T(deg)=	T(deg)=	ι		T(deg)=	T(deg)=
(in)	9.999	375	750	-1.500	-2.250	-3.666	-3.750	-4.500	(un)	-11.250	-11.625		-12.375	-12.758	-13.125		13.873
-3.866	14493.6	14487.7	14473.8	14421.4	14340.0	14272.3	14308.0	14366.0	3.000	14178.9	14156.1	14126.6	14076.5	13984.4	13808.8	13423.9	2569.5
-2.500	15215.	•	Υ.	15189.8	15161.0	15135.7	15140.0	15151.3	-2.500	14949.2	14929.1	14988.6	14860.4	14792.4	14656.4	14327.2	3514.2
-2.888	15448.2	15447.3	15445.4	15437.8		15415.0	15410.0	15408.0	-2.000	15210.2	15187.8	15160.6	15126.4		14962.4	14676.8	3767.0
-1.750	15498.		15495.4	15489.1	15481.0	15472.0	13467.7	15463.3	-1.756	15266.2	15243.8	15218.6	15186.4	15136.4	13636.	7.007.	100t
-1.588	15527.	15527.3	15527.1		1001	13367.6	10000	104401 2.04401	-1.580	15301.9	278.	15253.9	15222.	4.000	1.00.00.1	4007.6	
-1.258	15547.	19947.3	10046.1	10046.8	0.000	9.9766	10000	970	-1.258		15301.8	15277.6	15247.1	1 250561			
1.000		10008.	10008.6	10004	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10000		-1.000	15338.9			13263.7	13220.4	10167.4		9 9 9 1 4 1 4 1 4 1
258	15567.	15567.7	13366.1	10062.	10001	9.00	7.00	, 0	750	15347.2	-		13274.7		7		4173.0
- 508	15572.	15572.7	19972.1	100001	10063.6	9.900	. 64001	, n	588	15354.9	-	15309.3	12587.	10241.4		A 0000	200.7
. 238	_	155/5.6	1.02(01	100/6.8	1000	9.600	2000		-, 250	15358.6	15338.1	_	13286.	13647.7		•	000
9.999	_	15578.6	15576.4	13572.8	15567.3	12261.8	9.400	. 6	9.000	15361.2	15339.5	15317.6	15290.1	19291		0.11.01	0.70.7
. 250	2	15577.0	15576.8	15572.8	10068.3	15566.3	10000	10048.9	. 258	15361.6	15341.1	15318.9	15291.7	15253.1	1000		0.101.1
. 508	_	15576.8	15574.4	571.	15566.3	12229.8	15553.0	15546.3	. 500	15360.9	15340.1	15317.9	15292.1	15252.4	15167.1		7.00.0
. 750	_	15572.0	15571.8	15568.4	15562.3	15556.0	15549.3	15543.0	. 758	15358.6	15337.5	15316.6	15288.4	15250.1	15165.4		14192.8
1.000	-	15567.3	15565.1	15562.1	15557.7	15556.0	15543.3	15537.7	1.999	15353.9	15333.1	15318.3	15284.1	15244.4	15159.1		14187.2
1.258	15557.2	15557.0	15556.4	15553.1	15547.7	15546.0	15534.7	15528.0	1.258	15344.9	15323.8	15302.6	15274.4	15236.1	15150.4		14176.5
1.588	_	15541.7	15540.1	15538.1	15533.0	15526.0	15519.7	15514.0	900	6 1221	15318.5	15288.6	15261.7	15220.7	15134.7	14881.5	14159.5
7.50	15517	15517.7	15517.1	15514.1		15502.0	15496.3	15490.0	000	0000	000		1523B. 4	15198.1	15110.4	14855.2	14133.5
900	. 100	0 777	Q 747	15475		2465	2460.0	15452.3	1.738	. 664	0.00701		0000	15150	15871.4	14815.5	14092.5
2.666	.040.	13477.0	0.00	0.00		9000	15000.0	0.30501	2.000	'n.	15251.8	-	10000	10000	4.000		13925.5
7.086	13288.	13287.7	13609.1	13234.0	13635	1750	175701	0.0277	2.500	'n	15083.8	15061.6	55001		7		13475 2
3.866	14/83.6	14.603.61	1.41.41	14/46.4		0.00.11			3.888	14586.9	14562.8	14541.9	14212.1	14.63.41			
		NORM	AL 12ED-F i	NORMAL 12ED-Field(Gauss)-MATCHED	>-MATCHED				_		N C C C	ALIZED-Fi	NORMALIZED-Field(Gauss)-MATCHED)-MATCHED			
×	T(deg)	•	T(deg)=	T(deg)=	T(deg)=	T(deg)=	T(deg)=	T(deg)=	,	TORRAT	T(den)	T(ded)					
Curo	-5.258	-6.999	1	-7.500	- 1	-9.666	-9.750	-10.500	Ç	-14.250		-15.000					
١.							- 0				<u></u>						
-3.888		_	14371.8	14365.7	14267.9	14146.6	14131.0	14168.6	-3.006	_	_	7347.7					
-2.588	15156	_	15129.4			5.00	20.000	14976.6	-2.508	11969.7		7981.7					
-2.888	_	10694	1000	5.00.00	10336.6	0.0000	9.4.00	10246.4	-2.696	_	16364.8	8361.0					
-1.750	15457	15446	13431.8	10413.3		13364.	10330.6	13364.8	-1.756	_		8480.6					
-1.588	10488	10478	1040	9.7440.		9.00.00	10000	5 . V. V	-1.500	_	10567.5	8565.7					
-1.258	2	2 :	10460		6	0.556	10393.	10301	-1.250	_	19625.2	8625.7					
זיכב		11001	1.040	10401	13401.6	0.00	10467.7	10376.4	-1.888	_	19665.8	8668.7					
PC / -	-	K1001	10000	0.040	0.00	2		0.000.0	758	_	19694.5	8699.7					
588	_	_	15512.1	13496.6		9.404	13423.7	19391.	500	_	10713.	8722.7					
-, 258	15538.			15499.8	15480.2	15458.0	15427.7	15396.7	258	_	19728.	8736.7					
0.000	15548.	_	15517.4	15501.7		15459.7	15436.3	15398.7	9.099	-	10737.	8746.0					
. 250	15540.	15538.	15517.4	15500.3		15461.0	15430.0	15399.0	.250	_	10741.	8753.3					
. 500	_	_	15516.8	15499.7		15459.3	15429.7	15398.0	. 500	_	10743.2	8756.7					
. 750	15535.	_	15512.4	15497.3		15457.8	15426.3	15396.0	. 758	_	18741.5	8753.7					
1.666	15529.	_	15507.8	15491.0	15473.2	15451.8	15421.3	15390.0	1.888	_	10734.	8747.7					
1.250	15520.	_	15497.4	15483.0	15465.6	15443.3	15413.0	15382.7	1.258	_	16723.	8737.7					
1.500	15505.7	_	15483.4	15468.0	15451.2	15428.7	15399.3	15368.0	6.00	12691.	_	8722.7					
1.750	15481.3	15473.1	15460.1	15445.7	15429.9	15408.0	15378.0	15347.7	7.000	-	19684.5	8699.3					
2.000	15443.	_	15421.1	15408.0	15394.2	15372.3	15343.8	15311.7		٠ -	0.04	8667.7			٠		
2.588	15263.7	15251.1	15243.1	15239.3	15234.9	15215.7	15184.7	15147.7	•	• -							
3.888	_	_	14693.1	14715.0	14745.9	14746.0	14705.7	14644.0	•	• -	18217.8	· «					
	-								;	•		-					

The following is a list of the data in the TANGENT line sections of the scan:

				1,1	ı	1 (4 4)	# (W) /
-(01)	L(in)=	L(12)*	-Cup	2	- (10)	- (2)	- ()
-4.500	-5.000	-6.000	-7.000	-8.000	-9.000	-10.666	-11.000
1648.9	737.6	271.0	44.0	-38.0	-64.8	-69.0	0.99-
1140.9	815.6	318.0		-32.8	-62.0	-69.5	-67.8
1214.9	879.9	359.6		-26.8	-61.0	-70.0	-68.0
1246.3	986.9	377.6		-23.0	-60.0	-70.3	
1272.9	6.986				-69.0	-70.0	9.69-
1296.9	951.9		_	-18.0	-59.8	-71.8	
9.50	969.3			-15.8	-59.0	-70.3	
1333.6	983.6	432.8			-58.0		
1346.9	996.9	441.3			-58.0		
1357.9	_				-57.8	-71.0	
1367.6	1015.9				-57.0		
1374.6	_				-56.8	-71.0	
1379.9	1027.3	465.3	134.3		-56.0	-72.0	
1382.9					-56.0	-72.8	
1384.9	_				-56.0	-72.0	
1385.9					-56.0	-72.0	
1384.9					-56.0	-73.0	
1383.6	_		_	-3.0	-56.8	-72.7	-74.0
1380.9		473.0	_		-56.0	-73.7	
1378.9	_	_	139.3		-57.8	-74.8	
1067 0	_	_	_	-6.9	-58.0	-75.0	-75.3

Field integrals, effective lengths, harmonic Left side only. coefficients. VIII.

TITLE:ALADDIN Dipole-Polar Grid Left End (2=0.00) Offset arc scan R=2.08m The following data is derived from the data file(AL.P15) described here: Run number (15) was started at 9:48:5AM on 7/3/85.

The scan area is defined for this run by the parameters for region #1 in the geometry file named ALPLE.

51. The following field integrals are listed for paths at the SAME radii as to the central beam path at R=208.3cm inside the gap for scan #s 3 through

Field Integral	_ ×	Effective	** Edge	Effective Leng (cm)
.86395	-12.5	371	5.257	. 926
.86823	-11.9	Ñ	5.347	. 919
185	-11.3	•	5.422	960.5
87301	-10.6	984	5.475	5.151
87439	-19.8	9	5.518	5.196
87536	-9-	-	5.558	5.228
87698	8.8-	129	-55.5779	5.257
87656	9	824	5.594	5.274
8.87689	-7.	_	5.611	5.292
87707	9	198	5.622	5.303
87709	9-	861	5.627	5.306
0.87698	'n,	534	3.6	6.317
9.87668	-5.0	188	5.634	6.315
87614	†	3834	-55.6361	6.317
0.87526		481	5.634	56.3162
9.87387	1.6-	126	6	56.314
87163	-2.4	~	-55,6336	56,314

using The above data was fit with a polynomial of DEGREE-7 giving: The coefficients+!! and RMS errors for the field INTEGRALS, a estimated RMS error at each measured point of 4.7 Gauss, are:

b(0)= +8.7690E-01+/- 6.3741E-06 T-m b(1)= +3.872E-02+/- 6.391E-04 T-m/m b(2)= -3.8294E+00+/- 5.7969E-02 T-m/m^2 b(3)= +5.5780E+01+/- 1.0620E+01 T-m/m^2 b(4)= -5.490E+03+/- 1.0620E+01 T-m/m^4 b(5)= +9.291E+04+/- 1.16125E+05 T-m/m^4 b(6)= -1.1056E+08+/- 1.6125E+05 T-m/m^5 b(7)= +2.4303E+09+/- 1.4996E+09 T-m/m^7

The coefficients*i! and RMS errors for the CENTRAL field equal to the shove coefficients divided by the effective length of .3629 m ane:

ba(a)=+1.5578E+00+/- 1,1679E-05 T ba(1)=+6.8789E-02+/- 1,1792E-03 T/m ba(2)=+6.8011E+00+/- 1,0290E-01 T/m^2 ba(3)=+9,9106E+01+/- 1,8866E+01 T/m^2 ba(4)=-9.7533E+03+/- 1,2157E+03 T/m^4 ba(5)=+1,4619E+05+/- 2,8646E+03 T/m^5 ba(5)=+1,9641E+08+/- 9,3837E+06 T/m^5 ba(7)=+4,3316E+09+/- 2,6641E+09 T/m^7 1.515286 Gauss .10394259 Signar 0/(N-D-1)=

The PERK value is at R= 1.0627

Both sides.

TITLE: ALADDIN Dipole-Polar Grid Right End(2=0.80)Offset arc scan R=2.08m(E=1000M evy/ALADDIN Dipole-Polar Grid Left End (2=0.80) Offset arc scan R=2.08m the following data is derived from the data file (AL. P28/AL. P15) described here:

Run number (28/15) was stanted at 9:9:40AM/9:48:5AM on 7/12/85:7/3/85.

The scan area is defined for this run by the parameters for region #1 in the geometry file named ALPRE/ALPLE.

The following field integrals are listed for paths at the SAME radii as to the central beam path at R=208.3cm inside the gap for scan #s 1 through 97.

X Field Integral Effective Leng.	888 1.738619 112.827	445 1.739105 1	818 1.744788 112.359	175 1.748572 112.465	540 1.751279 112.553	985 1.753210 112.617	278 1.754632 112.672	635 1.755602 112.787	988 1.756245 112.741	635 1,756616 112,765	278 1.756556 112.775	985 1.756458 112.794	548 1.755854 112.791	175 1.754812 112.797	0 1.753070 112.79	5 1.758334 112.794	
x â	õ	4	8	7	3	96	.27	ო	99	69	2	8	ň	-	-	4	

using an The above data was fit with a polynomial of DEGREE=7 giving: The coefficients*!! and RMS errors for the field INTEGRALS, usinated RMS error at each measured point of 4.7 Gauss, are:

b(0)= +1,7563E+00+/- 5.258IE-06 T-m b(1)= +,828E-02+/- 5.3993E-04 T-m/m b(3)= -7.533E-00+/- 4.6285E-02 T-m/m b(3)= +9,978IE+01+/- 6.499E-00 T-m/m² b(4)= -1,078IE+01+/- 5.4734E+00 T-m/m³ b(5)= +2,7592E+05+/- 5.4734E+02 T-m/m³ b(5)= -2,250E+00+/- 1,1995E+00 T-m/m³ b(7)= +4,0255E+09+/- 1,1995E+09 T-m/m³

The coefficients*!! and RMS errors for the CENTRAL field equal to the above coefficients divided by the effective length of 1.127 m are:

b0(0)=+1.5578E+00+/- 4.6639E-06 T b0(1)=+6.943E-02+/- 4.7093E-04 T/m b0(2)=-6.6823E+00+/- 4.1054E-02 T/m^2 b0(3)=+9.4918E+01+/- 7.5340E+00 T/m^3 b0(4)=-9.4918E+03+/- 4.8549E+02 T/m^4 b0(5)=+1.9736E+08+/- 1.1440EF05 T/m^5 b0(5)=+1.9736E+08+/- 1.146EF05 T/m^5 b0(5)=+1.9736E+08+/- 1.0639E+09 T/m^7

1.705218 Gauss 1.184695 .13163281 Signa Q / (N-D-1)=

ē, PEAK value is at Rm 1.1176

IX. Secondary method for defining harmonic coefficients for all points.
A. Table of coefficients for each radial scan.

The following data is derived from the data file(AL.P28/AL.P15) described here: TITLE:ALADDIN Dipole-Polar Grid Right End(Z=0.00)Offset arc scan R=2.08m(E=1000M ey>/ALADDIN Dipole-Polar Grid Left End (Z=0.00) Offset arc scan R=2.08m

Run number (28/15) was started at 9:9:40AM/9:48:5AM on 7/12/85:7/3/85.

Number 1.00 to meet state of the form of the parameters for region #1. The scan area is defined for this run by the parameters for region #1 in the geometry file named ALPRE/ALPLE.

The following results are for the fits of a polynomial of DEGREE=7 to the field measurements at each radial scan #:

હા **ક**

Signa (Gauss)	. 4816 . 5896 . 5224 . 2631	6.65. 6.	8. 1992 9. 1998 9. 1998 9. 1998 9. 1998 9. 1998	6000 4000 4000 11000 4000 4000 6000	. 4969. . 7518 . 66945 . 4556 . 3683 . 3146	. 2594 . 3666 . 3162 . 2922 . 2361 . 3134	. 2663 . 19663 . 1989 . 3214 . 3218 . 3437 . 366
b(7) Si- (T/m^7) (Ga/ #10^9	+7.156 +1.421 -5.338 +2.782	+ 10.677 + 10.677 + 9.003 + 9.352 + 653	+ + 9. 288 + 9. 288 + 9. 941 + 2. 265 - 1. 326 - 1. 326	+ + + + + + + + + + + + + + + + + + +	-12.479 -2.305 + .434 -7.078 +9.176 -3.728	-3.286 -3.384 -4.313 -2.205 -3.487 +1.165	
b(6) b (T/m^6) (T, *10^8 *1	-2.671 -1.923 -2.042 -1.785	-2.012 +1 -2.026 + -2.126 + -1.978 -			1	0007 193 020 067 133 066	
b(5) b (T/m~5) (T #10^6 #1	1 + + + + + + + + + + + + + + + + + + +	6234483 6234683 6236883 6246883	00 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			+ 278 + 2099 + 262 + 262 + 262 + 262 - 347 - 347	+ 1 . 0 . 1 . 0 . 1 . 0 . 1 . 0 . 0 . 1 . 0 . 0
D(4) (T/m^4) (*10^4 *	1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		644 644 644 644 644 644 644 644 644 644		1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
b(3) (T/m^3) *10^2	+ + + + + + + + + + + + + + + + + + +	. + + + + + + + + + + + + + + + + + + +		+ + + + + + + + + + + + + + + + + + +	****	+ +	- 208 - 242 - 346 - 346 - 346 - 346 - 346 - 350 - 362 - 362 - 362
b(2) (T/m^2)		14.134 14.0034 14.0034 14.0016 14.0016 14.0061	; 4 4 4 4 4 4 4 4		, , , , , ,		
b(1) (T/m) *10^-1	+ . 126	+ + + + + + + + + + + + + + + + + + +	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	+ + + + + + + + + + + + + + + + + + +	++++++	+ + + + +	+ 673 - 633 - 649 - 692 - 692 - 696 - 696 - 696
6 (8)	+1.5578 +1.5578 +1.5573 +1.5573	+ + + + + + + + + + + + + + + + + + +	11 + + + + + + + + + + + + + + + + + +	+1.5318 +1.5291 +1.5251 +1.5166 +1.4912 +1.4191	+0.8747 +0.8747 +0.7177 +0.5901 +0.4866 +0.4028 +0.3316	+0.2721 +0.2210 +0.1762 +0.1367 +0.1016 +0.0456 +0.0129	-0.0057 -0.0071 -0.0071 -0.0067 -0.0061 -0.0054 -0.0054
Scan *	თფ → 010 Ժ თ თ თ (មេលស្សស្សស្ស ស្រស្សស្ស ស្រស្សស្រស្	0 10 10 10 10 10 10 10 10 10 10 10 10 10	7 3 3 4 6 6 6 6 7 7 7 7 8 8 8 9 8 9 7 8 8 8 9 8 9 8 9 8	2 4 10 10 V V V V V V V V V V V V V V V V V	[∞] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	@ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ � Ø → VI W 4 PV ® V
Sigma (Gauss)	.3470 .3188 .3401 .3302		2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 3660 . 3690 . 3691 . 5184 . 2927 . 3548	5429 . 3468 . 34645 . 6436 . 5636 . 5722 . 1872	
b(?) (T/m^?) #18^9	+3.824	-1.977 +1.929 +6.173 +1.863 -1.328	++2.0866 +1.231 +5.998 +5.998	+3.472 584 -2.146 +3.217 +7.057 +11.677 +6.038	+9.415 +1.286 +3.662 +9.184 -3.136 +5.726	+4.651 +4.695 +1.967 +2.753 +4.620 -1.588 +11.267 +2.252	
b(6) (1/#^6) *10^8	1144			++++++		-2.161 -2.194 -1.847 -2.396 -2.244 -2.316 -1.738	444444
b(5) (T/m^5) *10^6	+ 426 + 426 - 475 - 219	+ + 681 + + 158 + + 158 + 158	00000000000000000000000000000000000000			+ + + + + + + + + + + + + + + + + + +	
b(4) (T/m^4) *10^4	+ + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ + + + + + + + + + + + + + + + + + +	1 + 1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.948 -1.437 -2.652 -2.725 -1.592	1.252 -1.252 -7.22 -7.22 -7.44 535	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25.00 20
radia: b(3) (T/m^3) *10^2	+,238 +,291 +,130		+	+2.382 +2.682 +3.159 +3.632 +3.416 +3.122	+2.60.7 +1.197. +.491. +.861. +.833. +.633.		. + 1 + + + + + + + + + + + + + + + + +
at each b(2) (T/m^2)	656 656 1 35	+ 179 + 023 + 023 + 192 - 083	-1.236 -2.934 -4.869 -5.923 -6.838 -6.838	11.207 11.207 11.960 10.940 -9.950	-7.316 -7.316 -6.661 -5.761 -4.956 -4.688	-4.296 -3.882 -4.0882 -4.0882 -4.0856 -3.559	0.000 0.000
urements b(1) (T/m) *10^-1	656 631 676		+.582 +1.023 +1.283 +1.381 +1.451 +1.576 +1.666	+1.786.1+1.326.1+1.0056.1+	* + + + + + + + + + + + + + + + + + + +	. + + + + + + + + + + + + + + + + + + +	+++++++
field measurements b(0) b(1) (T) (T/m) *100-1	-6.6632 -6.6637 -6.6642 -6.6648	-0.00051 -0.00061 -0.00061 -0.00061 +0.00061	+0.0142 +0.0477 +0.1050 +0.1407 +0.1811 +0.2264 +0.2793	+0.4098 +0.4059 +0.6010 +0.7316 +0.8928 +1.0938	+1.2984 +1.4958 +1.5178 +1.5178 +1.5256 +1.52955 +1.52953		+ 1.5566 + 1.55

IX.A.1. Integrated coefficients for 1000 MeV.

The INTEGRALS of the field coefficients*i! and RMS errors, using an estmated RMS error at each measured point of 4.7 Gauss, are:

```
b(0) = +1.7563E+00+/- 5.3474E-07 T-m

b(1) = +7.7836E-02+/- 5.3995E-05 T-m/m

b(2) = -7.5497E+00+/- 4.7070E-03 T-m/m^2

b(3) = +1.0715E+02+/- 8.6381E-01 T-m/m^3

b(4) = -1.0501E+04+/- 5.5664E+01 T-m/m^4

b(5) = +1.6579E+05+/- 1.3116E+04 T-m/m^5

b(6) = -2.2388E+08+/- 4.2966E+05 T-m/m^6

b(7) = +5.0496E+09+/- 1.2198E+08 T-m/m^7
```

The coefficients*i! and RMS errors for the CENTRAL field equal to the above coefficients divided by the effective length of 1.127 m are:

```
b0(0)=+1.5578E+00+/- 4.7431E-07 T
b0(1)=+6.9039E-02+/- 4.7893E-05 T/m
b0(2)=-6.6965E+00+/- 4.1751E-03 T/m^2
b0(3)=+9.5042E+01+/- 7.6619E-01 T/m^3
b0(4)=-9.3142E+03+/- 4.9373E+01 T/m^4
b0(5)=+1.4705E+05+/- 1.1634E+04 T/m^5
b0(6)=-1.9858E+08+/- 3.8110E+05 T/m^6
b0(7)=+4.4790E+09+/- 1.0820E+08 T/m^7
```

Sigma = .4370 Gauss

IX.A.2. Integrated coefficients for 100 MeV and Y = 0.

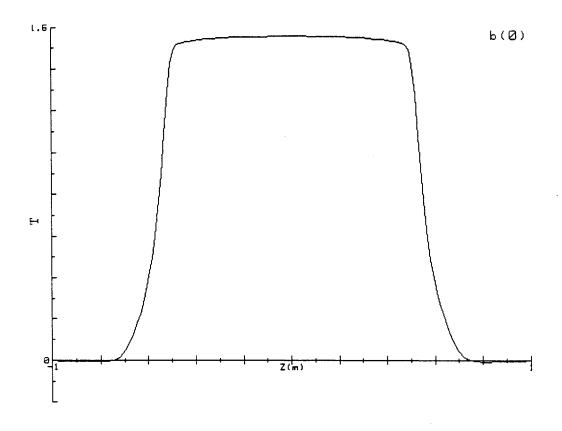
The INTEGRALS of the field coefficients*i! and RMS errors, using an estmated RMS error at each measured point of 2.4 Gauss, are:

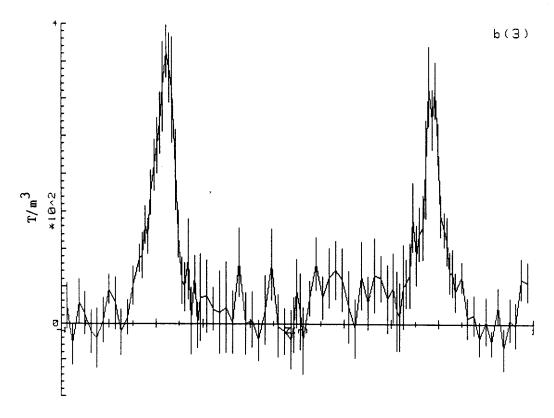
```
b(0) = +1.7449E-01+/- 2.9744E-07 T-m
b(1) = +3.6049E-03+/- 1.2800E-05 T-m/m
b(2) = -1.9178E-01+/- 1.3137E-03 T-m/m^2
b(3) = +8.4180E+00+/- 4.0690E-02 T-m/m^3
b(4) = -1.0588E+03+/- 6.1564E+00 T-m/m^4
```

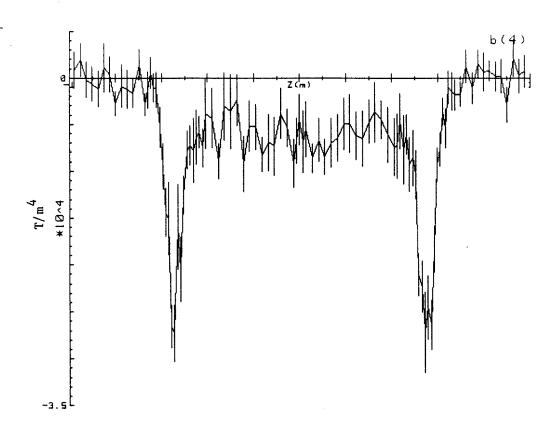
The coefficients*i! and RMS errors for the CENTRAL field equal to the above coefficients divided by the effective length of 1.141 m are:

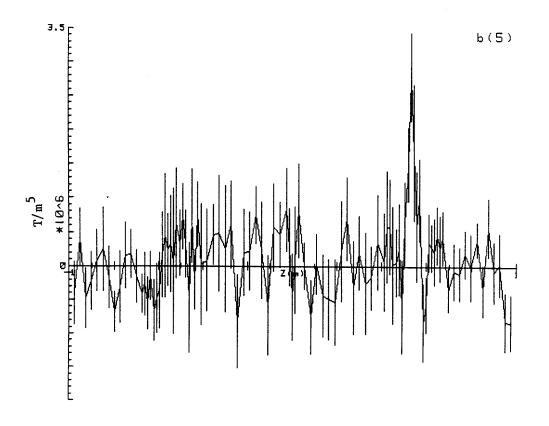
```
b0(0)=+1.5292E-01+/- 2.6067E-07 T

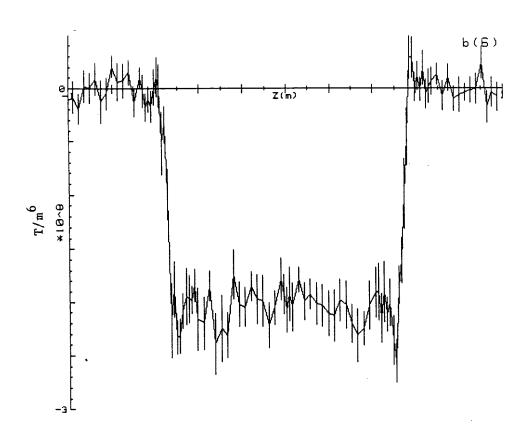
b0(1)=+3.1592E-03+/- 1.1217E-05 T/m

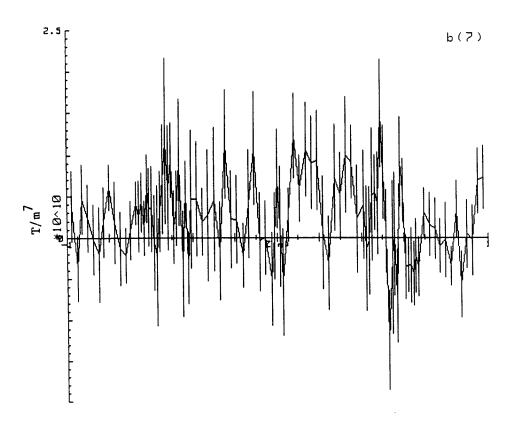

b0(2)=-1.6807E-01+/- 1.1513E-03 T/m^2

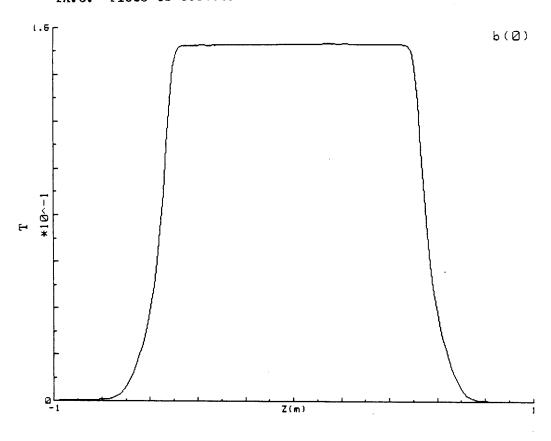

b0(3)=+7.3774E+00+/- 3.5660E-02 T/m^3

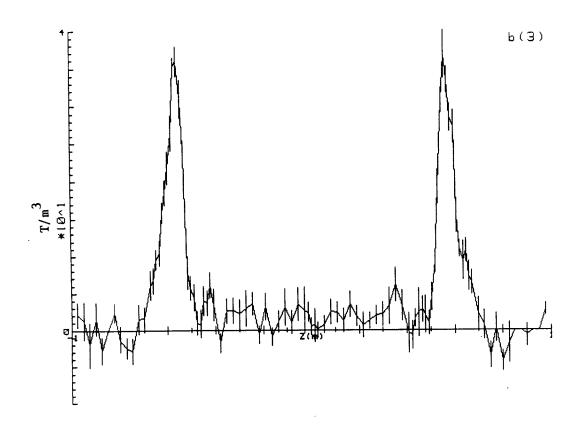

b0(4)=-9.2790E+02+/- 5.3954E+00 T/m^4
```

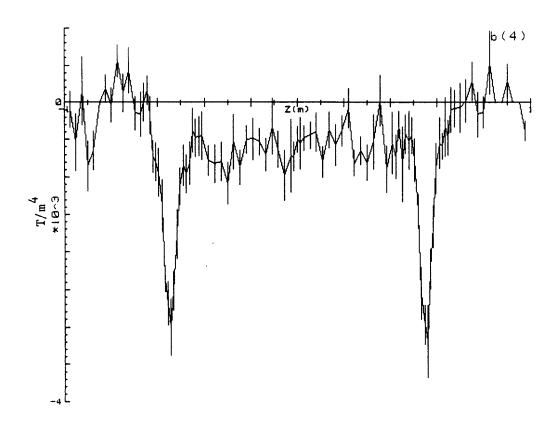

Sigma= .2886 Gauss


IX.B. Plots of coefficients vs Z at 1000 MeV.









IX.C. Plots of coefficients vs Z at 100 MeV.

X. Vertical midplane.A. Calculated locations at all scan points.

·
2
5
TANGENT line section of the scan-
l ne
TANGENT
4
-
data
of the
ō
1150
4
-
fol)owing
بر ب

i		1																												
	L(11)=	10.000	1221		1245	-,1016	1217		1319	1051	. 9888			0893	0879	- 0717		6836	0771	- 9653		_	0802	0912			0306	0569	_	_
	L(in)=	11.000	2469		2472	1511	0770		2482	8692	- 2487		`	1105	1894	_	_	1180	0768			1648	0585	0761		_	0485	_	_	_
	LCin>=	12.000	7,00		6518	- A539		-110/6	0982			107	6585	1648	1598	_	_	-, 3855	1867		_	1871	1007			_	- 1915	ġ	'	J650'-
	L(in)=	13.000	0	- 3056	. 5221	ROCR	200	6527	0819	- 1672		. 3404	1676	6592	_		3388	-,6616	_		_	0332	8926			- 1699	- 9848) CB9
Z(in)	L(in)=	14.886		. 6674	. 0283	2000	2636	8338	. 8282	7887	0.00	. 9281	6582	- 1719	2000		1715	1282		' 		1214			_	-, 1226				1747
52	L(in)=	15.666		. 0974	•		6483	1718	4004		1/41	1146	6860	9 6 6		4/60.	. 0647	- 2117			1742	9241	001		6628	. 8237		_	•	. 0226
	L(in)=	16.888		8078	000	9	6416	- 1724	0000	2 1	1117	. 8231	2000	000.	6591	. 0227	1134	2400	0000	6229.	. 0222	- 1147		1	. 0218	9216		,	.0212	9689
	L(in)=	17.000		8288	0 0	0 00 0	0737	61.		9170	1994	1996	0407	0000	1738	2002	_		1	. 0212	- 1122	_		١ -	. 0208	_	:		-, 1754	. 8199
-	×	C is		0000	3.000	-2.500	-2.868		000	-1.588	-1.258	000		962.	500	256		90.0	. 258	500	750	9 6		1.258		900	1.00	2.000	2.596	3.600

1,77,7	-(UU)	3.500		. 2569	. 1134	00.70	. 0467	9779.	. 8893	0003	6645	0113	0135	9619				0166	0176	0164	0110		1,10,1	0181	0189	0010	0610.	0225	
	LC151	4.688		. 3485	1237			. 0241	.0068	0121	0194	0235	8291	19281			- 6338	0312	0296	- 0306		2000	6276	0239	0251			0274	
	-(11)	4.500		. 1985	1124		1440.	.0183	. 0010	0155	0276	8354	0442	0.40	7040	1,8491	0536	0563	8543	. 0525		4700	0556	0510	- 9529			0525	_
	L(:1)=	5.688		. 8925	9	2	. 0241	9690	0117	-, 0293	9371	8488	9536		100.	0726	0782	0785	8829	2000		_	9836	0818	_		0788	0856	_
Z(in)	L(in)=	6.600		A125		20.0	6247	0286	8342	0398	9436	900	1986		BOBY	8641	9692	0728	9749		6735	0819	0831	8852			0901	- A952	_
72	L(in)#	7.888		- 0366		6293	0255	9266	- 0263	- 9267	0000	0000	0000	. 0630	6239	0242	6245	A 25.0	6966	2070	8282	0295	- 0299	- 9316		6363	0340	- 0369	-
	- (in) =	988	25.5	0313	2	- 0544	8595	05.0	1.00	24.0	7 10 0		1100.	0.50	-, 0321	0244	8288	87.10		1079	0223	-, 0225	0137			0141	0145		-
	= (' ' ' ' '	000	2.000		1.01	0860 -	- 9852	9647	0.00	000	2000	7.000.	0.00	8615	0527	8398	1 2621			6466	0469	0396		_	110	-, 0242	B252		+ cco
_	0	× (full		-3.000	-2.500	2 808		900	000.1-	-1.238	-1.666	. 750	999	258	999	9 6	900	996.	. 758	1.888	1.258		0 0	1. (38	2.000	200	3 6	3.888

L(in)=	. 500		0184	0000	0000	6259	6240	A225	A	0000	9979	6198	0186	- A178		6010	-,0165	0154	0148	1 0146		5	0144	0148	4810 -		<u>'</u>	1629	
L(in)=	~		6000		. 0017	0061	0059	- 0067	1	JC99.	0068	-, 6662	8861	7 200		6847	8834	0037	- 9927			6017	0016	0012	•	•	١	0063	
1 (in)=	800	1.000	9663		. 6189	. 0041	8000		0020	0008	6022	6620	8888		6664	. 8882	. 0004	8618	3000	0700	. 6633	. 0034	. 0042	9848		•		. 9946	
1000	2000	2.000	000	1660	. 0323	. 8872	000		8011	-, 0031	8833	. 601.5	0000	700	9618	8614	- 8812	2000		*000.	. 0013	. 8822	. 8836	4000	1000	. 0054	. 0056	6588.	_
- 17:17:	- (ul)	2.500		1331	. 8493	7818		2600.	. 0023	9015	- 9913	9000		664a	0028	0039	0000		. 0043	0000	- 0004	. 0011	1000		. 000	. 8687	0011	0026	
-	L(11) =	3.000		1979	9767	200	1 1 1	7888.	. 9919	0064	8000		10.	6146	0168	- 0173	9	1000	- 010	0135	0135	- 0131	9 1		0148	0145	0165	0163	
	×	(ui)		-3.888	200	900	-2.000	-1.759	-1.500	25.0	9 0	900	90.	- 500	259	000	9 6	907	900	750	1.000	20.0		000	1.759	2.999	2.508)

T(deg)=
1.500
-.0084
.00854
.00314
.04755
.0774
.1123
.1123
.2955
.2957
.2053
.1503
.1503
.1503
.1503

T(deg)= 2.250

T(deg)= 3.000 . 00097 . 00479 . 0479 . 0779 . 1083 . 1083 . 1264 . 2409 . 2383 . 2099 . 1752 . 1752 . 1853 . 1853 . 1853 . 1853

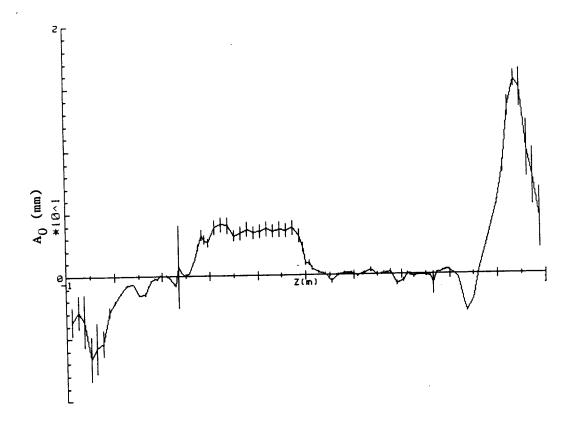
9)= T(deg)= 250 4.588		:	7400	•	•		. 1148		•	578 .2489	•			05 . 2283							333 . 83	_	_	-	Z(in)																								
T(deg)		. 68	•				. 1991			~	•	•		•						•	٥.	-					s ol			9	œ	4	_	4	~	•		• •	•	ŧ.	m	-	0	ĸn.	-	ın		· ve	
T(deg)= 6.000		6693	1400.	1979.	. 643b	.0697	. 1646	.1499	. 1948	.2080	.2370	. 2293	. 2159	. 2045	. 1818	1422	0	9000	. 6832	.0592	. 0364	9148	ď			T(deg)	.37		20	. 895	. 029	•	_		. 1427			•	•	•	•	•	•	•	•	•	918		•
T(deg)= 6.758		8894	466	2470.	. 6425	. 065	660.		. 2964	•	•	.2871	•				•	7711.	•	•	B373	91.10	9 9	9		T(deg)=	. 750	1	6682	. 886	ø.				1698	2220	9696		•	•		•	_	•	_	_	100		•
×ŝ		-3.606	2.50		-1.750	-1.500	-1.258	-1.888	- 750	. 588	-,258	999.9	850	666	756	000	000	1.258	1.586	1.758	000		9 6	9		×	Cut		-3.888	-2.500	-2.888	-1,758	-1.588	-1.258	1.000	250		900	907	9.996	. 258	. 588	. 750	1.000	1.258	500	75.0		٠.
T(deg)=	2	0130	. 8819	. 8218	. 0348	. 0525	. 0605	. 0859	ασσ σσ σσ	1142	1363	1281	000				1074	. 1000	.0872	. 0784	0000	9900	00.0	.6162		TOGET	7.588		0109	.0028	.0226	9384	400.0		7760.	0001	1791	2158	.2403	.2280	. 2623	-		•		•			š
T(deg)=	14: (30	0127	6000.	.0191	.0301	.0382	. 0459	2452	0 0		9616	0.00		900	0000	3000	0999	.0651	.0602	0.545	2 4 5 6	9 0	9679	ימומי		1/400)=	8.25		0113	.0020	. 0231	21.50	0	•	•	•	•	. 1934	•	•	•	•		1388	1001	7071		•	639
T(deg)=	13.153	0140	0010	. 0113	. 0153	. 0184	.0186	80	2.0	0000	0000	9100		. 64.0	0000	0070	.0270	. 0298	. 0308	10.00	9 6	, and	1825	. 6164		1/40.0/7	9.000		0117	0003	8282	2000	4470									2699		1631		700		.000	. 0424
T(deg)=	13.366	0142	0036	. 9914	.0026	8828	4088		1000			0000	200.	1000	7000	6000	. 0064	8200.	0680	9 6		9118	.0126	19898		1000	9.759		0107	99	•	7040	•	•	•	•	•	•	•	•					0 0	•	•		•
T(deg)=	13,875	0122	8859	0026	0021	- 9927	9000		. 0000		2000	7700:-	* 1	- 1881	.000	0004	. 0004	. 0007	91.00		. 100	6883	. 9941	. 6643			18.588		0107	ABBR												3020	•	9090	•	•	•	2620.	•
T(deg)=	14.250	8895	9886	. 9955	. 8868	000		9 6	. 668	0899	1600.	8899	0890	2899.		. 6694	6992	2600.	9193	3	919	.0109	. 0107	6200.	ì	- [11.259		- 9108	9 6		0000	200	9.00	9620.	2060.	. 1348	. 1353	•	_			•	245.	0001.	. 1 100	. 6933	.0674	. 6488
1(deg)=	14.625	9000	. 0143	. 0593	1984		707.	0 .	.6846	4400	4100.	0.00	- 4289	3882	3916	3926	4362	5382	1000	7000	.6829	. 6695	. 1305	. 0523			1(40)*	:	- A124		200								•	•	•		. 106.	•	971	-	•. —	. 072	G.
=(6ap)	15.000	2494	1368	- 9597	4040	1000	0000	1.63.1	-, 0320	6366	8294	6282	6268	8264	0261	0252	8255	- 8263		. 0450	0285	0308	0488	0655			T(deg)*	3	0100	0.00	0 0 0 0	. 8667	9220	. 8685	. 0847	.1103	.1423	. 1841	.2149	2272		7 6	0000	5001.	1440	.1233	. 1083	.0754	9547

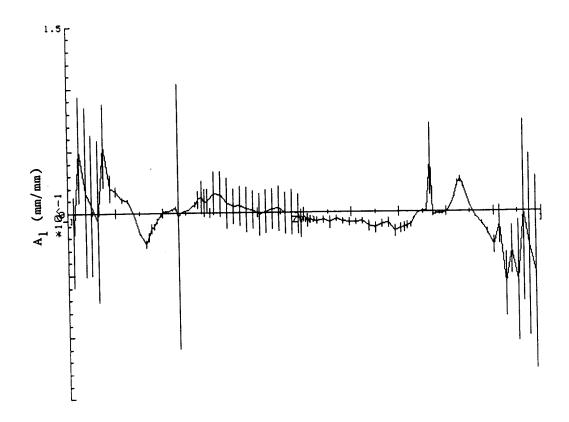
The following is a list of the data in the ARC section of the scan:

1	- SC		3	93	29	63	26	50	46	42	36	32	32	29	26	25	28	29	38	34	37	36	17				
	T(deg)= -13.875	3	0134	0093	0067	8863	9956	8858	8846	6642	0036	0032	9932	0029	8826	6625		0029	0038	0034	0037	0036	0017				
	T(deg)= -13.500	2010	9710	0076	0039	0032	0028	0027	0015	8615	0019	0018	0010	0014	0016	0018	8817	8827	0025	6636	6638	6633	0006				
	T(deg)= -13.125	,,,,	*	0072	8833	0008	0014	8883	0018	0005	0004	6669	6615	9014	0029	8834	0061	6051	8868	0065	0068	0050	6617				
	T(deg)= -12.750	,,,,	9	0879	9000.	. 0019	. 0051	0200.	. 0072	. 0049	. 6643	1600.	. 0013	. 6923	8677	8688	0134	0124	0159	0140	0127	0083	8821				
) (u	T(deg)= -12.375	1	0.10	0978	6665	. 8643	. 8651	8899.	.0127	.0117	. 0065	6000.	0005	0062	0186	0303	0371	0274	0259	0242	0168	0084	0031	'n			
J.	T(deg)= -12.000		1010	8865	. 8815	. 0068	. 0112	.0169	.0169	.0188	. 0223	. 0560	. 0145	0045	0097	0265	0280	0291	8299	0193	0131	0075	0025	Z(11)	T(deg)= -15.888	3680	700
	T(deg)= -11.625	0	0010	0068	. 0016	9699.	.0121	. 0249	. 0209	. 8356	. 0223	. 6344	. 0269	. 8121	0067	0182	0385	0318	0197	0177	-,0152	0092	0037		T(deg)= -14.625	0234	0000
-	T(deg)≈ -11.250		1010	8866	. 6665	. 6638	. 0054	9696	6200.	. 0059	. 8882	0167	0146	0446	0535	9617	0580	0467	0268	0244	0139	8884	9935		T(deg)= -14.250	0140	0.00
	× û	000	2.000	-2.500	-2.808	-1.758	-1.588	-1.250	-1.000	758	500	250	9.698	. 250	. 500	. 750	1.888	1.250	1.500	1.758	2.000	2.588	3.888	-	× Ĝ	-3.888	000
	T(deg)= -4.500		0122	0055	.0036	. 8867	.0137	.0172	.0200	. 0246	.0443	.0076	.0126	0056	0021	-,6037	0171	. 8811	0105	0058	6693	0043	9912		T(deg)= -10.500	0157	
	T(deg)= -3.750		0127	0060	. 0013	. 0034	9699.	.0109	. 0212	. 0010	.0168	.0102	0110	0147	0150	0156	0153	. 0037	0015	0077	0047	6646	0014		T(deg)= -9.758	0160	
	T(deg)= -3.888		0155	0087	0008	8888	. 0022	. 6683	8823	8800.	0127	0362	0452	0453	0818	0543	6329	-,0162	9888	0143	0114	0053	8889		T(deg)= -9.000	0164	
	T(deg)= -2.258		0149	0078	0006	. 8855	. 0081	.0170	.0185	. 0333	.0184	. 8629	.6170	0122	0201	0219	6005	9087	0009	6654	0060	0063	66939		T(deg)= -8.250	-, 6144	
n)	T(deg)= -1.508		0139	0064	. 9035	.0103	.0194	. 0228	. 6311	. 9324	. 0402	.0176	. 8835	. 0967	0139	9899	.0188	0005	0002	0046	8842	8858	0043	â	T(deg)= -7,588	0140	
Z(in)	T(deg)= 758		0115	0037	. 9991	.0116	. 0205	. 0293	. 0366	. 0370	. 0371	. 0592	. 0409	.0268	. 0064	. 0111	. 0171	. 0113	. 8838	. 0033	0024	0015	0033	Z(in)	T(deg)= -6.758	0135	
	T(deg)= 375		-, 0114	8623	. 0111	.0188	.0298	. 0389	. 8621	. 8689	.0783	. 0810	. 8838	. 0532	. 0312	. 8481	. 0143	. 0250	. 0125	. 6678	. 8838	8669	9822		T(deg)= -6.888	8129	-
	T(deg)≖ B.BBB		8699	0005	.0127	.0184	. 9284	. 0327	9216	. 8496	. 8742	. 6553	. 0634	. 8672	8338	.0406	. 0316	. 0254	9216	. 0117	. 0073	. 0022	0007		T(deg)= -5.250	0125	
_	×ŝ		- 3.066	-2,500	-2.888	-1.750	-1.500	-1.258	-1.000	- 758	500	250	8.989	250	500	750	1.000	1.250	1.500	1.750	2.888	2.588	3.888	_	×	-3.888	

	T(deg)=	-15.000	3680	.1086	. 0231	. 0140	. 0105	. 0081	. 0065	. 6947	. 9947	. 9641	. 6037	. 0036	. 0042	. 0040	. 6646	. 0037	. 8844	. 8643	. 9942	. 8641	. 0025
	T(ded)=	-14.625	0234	0221	0310	8482	5991	. 8452	. 0253	. 0159	. 6139	6200.	. 8867	. 0021	. 8831	. 0042	. 6969	9496.	.0101	. 0157	. 8349	0163	6017
	T(deg)=	-14.250	0140	0107	9087	0072	6670	0068	6868	6655	0055	0052	0053	0048	0648	0054	6648	6645	0044	9946	8847	0038	8021
	×	(in)	-3.888	-2.500	-2:000	-1.758	-1.500	-1.258	-1.888	758	- 500	258	9.898	. 250	. 500	. 750	1.888	1.258	1.588	1.750	2.000	2.588	3.000
	T(deg)=	-10.500	0157	0068	. 8015	. 6657	. 0043	1888	. 8811	8854	0248	8218	8588	- 8568	0697	-, 6799	0579	-,0589	0361	0269	0169	0086	0038
	T(deg)=	-9.758	0160	0071	. 6693	6688	. 0142	0178	. 0271	. 8223	. 0430	.0288	8833	000	. 01.01	0177	0118	0176	0101	8896	6649	0057	8829
	T(deg)=	-9.699	0164	8877	. 6051	9699	. 9141	. 0202	. 8192	. 0266	. 0287	. 0336	. 9966	0161	0225	0102	0233	0221	0121	0073	0068	0052	6012
	T(deg)=	-8.258	0144	- 9958	6988		. 0167	4010	. 6327	9329	. 8412	. 0038	. 0193	- 8339	0164	0389	0291	6242	0138	0144	0089	0056	8889
- C	T(deg)=	-7.580	0140	- 8644	. 0072	. 0112	. 0213	9398	. 0387	9414	.0716	8428	9317	98.00	0017	8125	0082	9600 -	6672	0077	6678	8846	6614
7	T(deo)=	-6.758	0135	8849	. 0039	9699	9139	48.10	9296	9596	8289	9344	9172	46.00	0072	8027	0141	- 0066	0051	8846	8861	0035	8889
	T(deg)=	-6.608	0129	. 000.	68689	. 9946	. 8893	9197	9216	9149	9999	8968	5000	- 8976	0178	0367	- 0134	0175	0125	0061	8898	8852	8618
	T(deg)=	-5.258	0125	6848	8828	0073	6117	89168	4400	9282	6126	. 8212	48.6	20.00	8174	0191	-, 6688	0115	0865	- 9985	0077	0041	0014
_	×	- Curo	-3,888	12.59.0	0.00	-1.758	1.598	25.5	288	75.0	660	2000	900	200	62	758	1.000	1.250	1.500	1.758	2.000	2.500	3.666

The following is a list of the data in the TANGENT line sections of the scan:


	L(in)=	-17.000		. 0952	. 8852	4970		. 1002	.4967	.1236	.1238	.4973		. 00	.1295	.6378	1325	0 7 0 0	21	6716.	.6376	.6838	. 0177	0300		. 6961	. 1305	1616	
	_							•		•	•																		-
	L(in)=	-16.000										_									. 5016			_		_			_
Z(in)	L(11)=	-15.000		. 0048	. 6430	2008		. 5824	1686	. 5032	. 6844	9861		.640	0849	. 6465	.6841	9.00	0	.6474	. 6839	1569	.6484	2404	0 1	1556	.6494	- 3170	•
>2	L(in)=	-14.000		. 6848	. 6846	6481		. 5061	. 6844	. 6499	. 6498	11.59		.6841	. 5083	.6219	6518	1000	7	. 6538	.6838	. 6539	6233	1730	000	. 6835	.6834	6693	
	L(in)=	-13.000		1897	. 6511	200	2 1	6230	. 6842	. 6541	. 6841	6882	9 1	.6558	. 6557	. 5115	6269	2000	. 202	.6259	.6578	.5368	6588	2020	0605.	. 6834	.3695	2020	00000
	L(in)=	-12.000		3700	.3223	4880		. 6842	.6565	. 6841	3698	000	2	3962	. 5898	4104	6836		1000	. 5092	. 6834	3570	. 5526		1007.	. 4293	. 5591	3030	7
_	×	Circ		-3.666	-2.500	000	7	-1.758	-1.588	-1.258	-1.000	2 1		588	250	0.000	250		990	. 750	1.000	1.250	. 599		DC	5.888	2.500	000	3.000
	(in)=	-4.808		8560	1013		1231	0989	4080	7878 -		+ 000	6549	6475	- 0432	0000	9 6	2000	0311	0245	. 8269	8000	100	. 6233	0202	0217	- 0234		6243
	1 (in)=	-3.500		1838	000		6515	0425	- 8328	000	200	1070.	0184	8149	1010			. 0005	0005	8886	8823	0.400	1 100	1000	. 0050	. 8842	0.00		8886
	1 (10)	-3.000		- 9751	0000	200	0169	0127	1000	0 00 00	2 0	- 60	0036	8888	9000	0000		0400.	. 0053	. 0068	9600	9 6		0110	2600.	. 0102	9		. 0056
	-(4,5)	-2.588		9886	000	***	. 6652	. 8835	90	0.40		4000	. 8863	. 8852	9988	0000	200	8,99.	. 6693	. 6893	9116	9 6		0000.	. 0074	. 8878	2000		. 0021
(49)		-2.000		2120	1000		. 6143	9154	95.19	0 1 4 2	7.00	1710	. 6143	. 8135	2410			9148	. 0146	B143	46.10		200	1710.	.0108	8188	87.00		. 0048
26	1	1000		9 8 9		7000	. 0226	1818	1916	. 44		9	. 0112	. 0116	4010		0110	. 6113	. 0127	. 0121	9 6	900	0 0 0	. 014	.0120	9116			. 0888
	-///	11 999		07.60		+620.	. 8219	8718	00.0		0 1 0 0	0699.	. 9077	. 8873	0 0 0	9 6	. 000	. 6688	. 9985	2000	9 0			7600.	. 9992	9	1000		. 0087
	1	1 200	2	7000		£ 000 .	. 0158	41.16	0.00	7 7 6 6	1000	8500.	. 9640	8698	9000		1500.	0000	. 9938	1 400	. 64			7400.	. 8644	200	9 0	0000	. 0048
-		× (000	99.6	996.7-	-2,000	750	9 6	0 0	907.1-	-1.666	- 759	200	0 0	9 6	9.888	. 250	599	75.0		990	007	. 588	1.750	000	200	2.300	3.888


ļ							
-(11)-	L(in)=	L(in)=	L(in)=	L(in)	L(11)=	L(in)=	していりま
-4.500	-5.000	-6.999	-7.000	-8.000	-9.698	-10.000	-11.666
2873	2199	0709	. 0569	. 1358	1958	. 2981	.4298
2163	1888	0861	. 0411	1241	. 1803	.3047	.3107
.1647	-,1759	0916	. 0284	. 1168	1801	.3478	•
1444	-,1592	-, 6919	. 0221	1037	. 1919	.2548	.4527
.1307	1476	0897	. 0202	. 0965	.1782	.2234	.3586
1204	1404	0905	.0141	. 1014	.1626	•	
1088	1346	0904	.0137	. 6948	.1510	.2256	_
. 0994	1250	0873	. 0088	. 0847	. 1642	٠	•
0360.	1186	0854	. 0084	.0846	1599	.2393	•
. 8842	1135	0842	6800.	. 6842	. 1414	.2154	•
8620.	1108	0811	. 8894	6620.	.1299	.2574	
0735	-,1076	0801	9200.	.0763	.1530	.1788	•
. 9685	1009	0788	.0074	.0762	. 1389	. 2477	·
. 6630	0983	0760	.0078	.0783	.1243	.1999	Ī
.0690	0912	0763	. 0070	. 0742	.1423	.1785	Ĭ
. 0580	8932	0731	6988	.0770	. 1213	.1758	
. 0557	0883	0726	. 0095	. 0723	. 1317	. 2036	_
. 0547	0854	0701	.0184	.0736	. 1221	.1662	_
.8538	0828	0701	.0109	. 0735	. 1250	.1940	
.0523	0809	0676	.0115	9998.	.1313	.1749	•
6542	1620	0681	.0154	. 8777	.1220	.2012	. 2523

X.B. Fit coefficients on each radial scan.

0	A(0)	A(1)	Sigma	Scan	A(0)	8(1)	Sigma
Scan	(mm)	(WW/WW)	(mm)	#	(mm)	(mm/mm)	(mm)
#	(mm)	*10^-2	*******			*10^-2	
		-10 -					5044
1	-3.6487	-2.320	4.6565	49	+0.9435	325	.5244
2	-2.8345	+5.109	5.4613	50	+0.9966	673	.6850
3	-3.5696	+1.701	8.6994	51	+0.5350	582	.3978 .3295
4	-6.5728	+.659	7.2880	52	+0.2467	714	.3293
5	-5.7294	639	8.3241	53	+0.0648	623	.6065
6	-5.3514	+5.489	4.2867	54	-0.5168	829	.2581
7	-2.8604	+2.022	1.4086	55	-0.0119	499	.3173
8	-2.0952	+1.750	.4537	56	+0.1450	742	.3435
9	-1.3341	+1.071	.2148	57	+0.1238	799 793	.2781
10	-0.7462	+1.002	.1356	58 50	-0.0617	716	.2969
11	-0.6720	142	.0527	59 60	+0.1733	-1.136	.5238
12	-1.5440	-1.618	.0874	60	+0.3699		.4913
13	-1.4325	-2.475	.3904	61	+0.0008	-1.276 959	.3743
14	-0.8752	-1.932	.4432	62	+0.1120		.4684
15	-0.4372	-1.252	.4294	63	+0.2277	887	.5928
16	-0.1820	-1.075	.2760	64	-0.7069	-1.541	.4764
17	-0.2432	624	.2159	65	-0.4988	-1.333	
18	+0.0134	190	.1333	66	+0.0778	-1.250	.4528
19	+0.0136	+.078	.0760	67	-0.0244	-1.101	.3432
20	+0.0326	+.127	.0484	68	-0.2058	-1.058	.2511 .1265
21	-0.1088	+.146	.0194	69	-0.0606	581	
22	-0.4603	+.274	.0325	70	-0.0732	148	.0373
23	-0.7877	+.404	.1219	71	-0.0567	+.009	.0207
24	+0.7474	318	13.6543	72	-0.0990	+.083	.0201
25	+0.2242	+.098	.0136	73	-0.1436	+.085	.0144
26	-0.0249	+.130	.0178	74	-0.7155	+4.222	3.6409
27	+0.1317	+.220	.0261	75	+0.1668	286	.0952
28	+0.5906	+.438	.0348	76	+0.1402	158	.0705 .0806
29	+1.3463	+.692	.2743	77	+0.2642	170	
30	+2.3102	+1.097	.8973	78	+0.3400	151	.0607
31	+3.2594	+1.247	1.6822	79	+0.3437	062	.0304
32	+2.8908	+.791	1.4291	80	+0.1796	+.125	.0371
33	+2.6271	+.976	1.1692	81	+0.0142	+.677	.0510
34	+3.8848	+1.572	2.2383	82	-0.3185	+1.303	.1435 .3075
35	+4.0970	+1.487	2.2931	83	-1.2651	+2.282	.2747
36	+4.0145	+.774	2.6150	84	-2.2565	+2.585	.1806
37	+3.1967	+.507	1.7535	85	-2.9480	+2.107	.0304
38	+3.3720	+.557	2.0430	86	-2.0757	+.611	.1135
39	+3.7059	+.263	2.3061	87	+0.2995	351	.1133
40	+3.4366	+.228	1.9207	88	+2.1623	930	
41	+3.5250	143	2.1628	89	+3.7499	-1.583	.2589
42	+3.7467	+.105	2.2530	90	+5.6841	-2.721	.8462
43	+3.5602	+.286	2.0595	91	+8.5665	-1.046	1.9435
44	+3.6849	+.341	2.3030	92	+13.3298	-5.823	3.2516 2.4864
45	+3.6142	035	2.1109	93	+15.5338	-3.078	6.2300
46	+3.7933	+.006	2.3098	94	+14.8072	-5.583	9.2788
47	+3.1634	105	2.0034	95	+9.9370	+.049	9.2700
48	+2.2481	906	1.4246	96	+7.7571	-2.721 -4.950	9.2932
, 3	_ = =			97	+4.4383	-4.950	7.0071

X.C. Plot of coefficients vs Z.

